visualize your business

pCon.planner 6 - Manual

Software version: 6.1

28.October 2009

Title:	pCon.planner 6 - Manual
Date:	28 October, 2009
Author:	Mandy Weitzel
Supplier:	EasternGraphics GmbH Albert-Einstein-Straße 1 98693 Ilmenau Germany www.EasternGraphics.com

Legal Disclaimer

This work (e.g. text, file, book etc.) is protected by copyright law. All rights are reserved to EasternGraphics. The translation, reproduction, or dissemination, fully or in part, is only permitted upon the prior written consent of EasternGraphics.

EasternGraphics assumes no guarantee for the completeness, accuracy, currentness, continuity, and fitness of this work for the purpose intended by the user. A liability of EasternGraphics is excluded, except in cases of intent or gross negligence and personal injury.

All names or labels contained in this work may be trademarks of the respective holder of rights and may be trademark-protected. The fact that a trademark is mentioned in this work should not lead to the assumption that it is free and everybody is allowed to make use of it.

Table of Contents

1 Introduction 1
1 What is the pCon.planner? 2
2 Download, installation and updates 3
3 How to work with the online help 4
4 Technical hints and tips 5
2 User Interface 6
1 The Application Menu 9
Create a new drawing 10
Open an existing drawing 10
Save a drawing 10
Save a selection 10
Import 10
Export 11
Print 11
Send an e-mail 14
Purge planning 14
Document Properties 15
Settings 15
2 The Ribbon 17
Home Tab 18
Edit Tab 19
Insert Tab 21
Presentation Tab 22
View Tab 23
Help Tab 25
3 The Quick Access Toolbar 27
Add a command 28
Hide a command 28
Remove a command 29
Move the Quick Access Toolbar 29
4 Work Area and Viewports 30
5 The Status Bar 32
3 Furnishing with the pCon.planner 33
1 How to use your mouse and keyboard 34
Mouse 34
Keyboard 35
2 Select objects 41
Object structures 41
Methods of selecting 42
3 Tools and functions 44
Tools 44
Draw 44
Move 46
Rotate 47
Scale 47
Extrude 50
Curvature 51
Array tool 51
Functions 52
Group and ungroup objects 53
Control visibility 53
Edge softening 55
Assign colors 58
Assign and edit textures 59
Edit properties 69
4 Navigation in the planning 70
Zoom operations 70
PAN mode 72
Orbit mode 72
WASD navigation 73
Walkthrough Interaction Mode 74
5 Camera settings and rendering modes 74
Camera angles 75
2D camera positions 75
Isometric camera positions 77
Perspective camera position 78
Individual camera views 79
Assign camera positions 83
Rendering modes 84
Wireframe mode. 84
Hidden line mode 85
Colored mode 85
Conceptual mode 86
Shaded mode 86
Realistic mode 86
Extended rendering options 87
Adjust rendering 88
Show outlines 89
Transparent walls 90
6 Aligning objects 91
Coordinate systems and reference point 91
Aligning objects using the User Coordinate System 93
Selecting and deselecting axes 98
Using axis snap 101
Using ojects snap 103
Configure snapping types 103
7 Design and furnish rooms 106
Walls 107
Drawing walls 107
Moving walls 111
Rotating walls 113
Scaling walls 114
Stretching and shortening walls 115
Curving walls 116
Extruding walls (adjusting the height) 118
Connecting, disconnecting and splitting walls 119
Grouping walls 120
Doors, windows and wall openings 121
Insertion process 122
Modifying position and size 123
Opening options for doors and windows 127
Round wall openings and niches 128
Floors 131
Objects 132
pCon.catalog client 132
3D Warehouse 142
Importing object files 143
Inserting pictures 146
Inserting texts and annotations 147
Illumination 149
Spotlight 150
planner 6
Directional light 155
Point light 159
Default lighting 162
Drawing elements 163
Creating drawing elements 163
Moving drawing elements 165
Rotating drawing elements 165
Scaling drawing elements 166
Extruding drawing elements. 166
2D symbols catalog 167
8 Presenting the planning 170
Presentation 170
Animation 172

planner 6

1 Introduction

Welcome to the pCon. planner online help

The pCon.planner online help contains all important information you need to know for using the software. You can use it as a tutorial to get to know the different tools, functions and operations. Otherwise you can use it as a reference guide.

The online help consists of the following three chapters:

Introduction

The introduction summarizes pCon.planner and tells you what it can achieve for you. You will learn everything you need to know about download, installation and updates. Furthermore you will get to know how to use the online help.

Link to chapter "Introduction"

User Interface

This chapter introduces the user interface of pCon.planner. Step by step you will learn about thedifferent components of the program. The chapter provides you with important knowledge about how to work with the software.
Link to chapter "User Interface"

Furnishing with the pCon.planner

This chapter deals with the interior design and furnishing planning. From scratch you will learn how to carry out the planning, which important things you need to keep in mind and how to efficiently and successfully work with the software.

Link to chapter "Furnishing with the pCon.planner"
planner 6

1.1 What is the pCon.planner?

The pCon.planner by EasternGraphics is a professional and easy-to-use space planning and furnishing software. The application allows you to create complex furnishing concepts in a comfortable and professional way, and to visualize these concepts in a photo-realistic quality.

The pCon.planner provides you with the following features:

Room design

The program features powerful functions particularly optimized to plan and modify rooms and buildings. With intuitive tools you design entire living and working environments, which could be anything from a small room to a complex office floor. Just as easily you can allocate colors and materials and simulate lighting situations.

Furnishing design

To design the furnishing, the pCon.planner can handle different data formats such as DWG, SKP or OFML. In the program the user has access to various online 3D libraries, such as pCon.catalog - a web browser compiling a steadily growing number of web catalogues of numerous manufacturers and dealers in the furnishing industry - or the Google 3DWarehouse. There you can chose suitable objects and load them directly into your design project.

Graphical presentation

For construction and presentation purposes the pCon.planner provides various qualities of visualization and camera perspectives, each of which is realized with fast real-time rendering. This allows you to move live and interactively through your planning.
Just click here to have a look around the online gallery of the pCon.planner 6 website. There you can get an impression of the brilliant rendering quality.

1.2 Download, installation and updates

Download

pCon.planner can be downloaded easily and free of charge from the pCon.planner website. Follow the link to the download website for the current version of the software.

Installation

Double-click the downloaded file for installation. Before installation, check the system requirements to make sure your computer is compatible with the software.

The installation process is very easy and does not require any special knowledge.

Updates

The pCon.planner updates are made available regularly and free of charge. You can chose from the following two options:

Either:

- You use the pCon.planner automatic update service. By default this option ("automatic check for new versions") is already activated in the Application. Menu under "Settings" on the Online tab.

Or:

- You click the Updates button on the Help tab in the Ribbon to search for pCon.planner updates. This manual method is useful if you have deactivated the automatic update service.

If an update is available, simply follow the on-screen instructions for download and installation.

1.3 How to work with the online help

This article gives you hints on how to use the online help. It answers many questions potentially arising in the context of the online help.

What does the online help do for the user?

The goal of the online help is to introduce the user interface, the functions and the tools of the pCon.planner in such a way that you are able to independently operate the software.

Apart from the introduction, the online help consists of two big sections. In the chapter "User Interface" you get to know the different elements of the pCon.planner interface, which gives you an impression of functions and capabilites of the software.
The third part of the online help - the chapter "Furnishing with the pCon.planner" - discusses the tools and operations provided by the pCon.planner. Numerous examples with illustrations and descriptions familiarize you with the software. This will enable you to quickly implement your ideas and concepts.

Why are some terms displayed in bold letters?

The most important terms in the online help are highlighted in bold letters. This enables you to have a broad overview of the content without reading the entire text in detail. Certain software-specific terms are also printed in bold.

What are tabs and groups?

The online help regularly refers to tabs and groups. These terms refer to the structure of the Ribbon. As illustrated in the figure below, the commands are organized in logical groups, which are pooled on superordinate tabs. In the example below, the Home tab is activated. The related groups are Clipboard, Tools, Room and Insert.

1.4 Technical hints and tips

This page provides hints and tips to effectively counteract problems with the graphical display of the pCon. planner.

Contents

1. General hints on graphics
2. Before installation
3. Not supported rendering modes
4. Improvement of processing speed
5. ATI graphics cards
6. Refresh rate

General hints on graphics

- The pCon.planner may be limited in regard to the quality of display and processing speed if used with graphics hardware older than two years.
- Make sure that the up-to-date graphics card driver is installed on your computer. If required ask your IT personnel or system administrator.
- We recommend a color quality (desktop color depth) of $\mathbf{3 2}$ bit. If problems with the display arise, test whether a change to 16 bit solves the problem.
- If you are using a notebook, we recommend using a stand-alone graphics card. Onboard graphics hardware is often less powerful.

Before installation

- Make sure your computer is suitable for the installation of pCon.planner. To do this, please refer to our suggested requirements and minimum requirements.
- Install the up-to-date driver of your graphics card or inquire with your system administrator about the current driver status.

Not supported rendering modes

It is possible, that your system does not support all rendering. modes of the pCon.planner. If this is the case, the note displayed below (Figure 1) will pop up each time you start the program. In the Render group (View tab), the unsupported rendering modes are replaced with the icon displayed below (Figure 2). Install an updated version of your graphics card driver or inquire with your system administrator about the current driver status. An update of the graphics card driver usually solves rendering mode problems.

Information

i. Not all rendering modes are supported on this system. Find more information on this topic online.

Click here for further details.

Figure 1

Improvement of processing speed

- The rendering modes of the pCon.planner differ in processing speed. With newer graphics cards, the Conceptual mode is usually fastest. In combination with older graphics cards, however, the Shaded mode is faster. Try the different modes to find out how each one of them works on your computer.
- By default, synchronization of center and zoom of the orthographic views are deactivated (see "extended rendering options"). If these options are activated, the software needs more system resources. If not sufficiently available, the processing speed is slowed down.
- If you are carrying out large plannings, or if your computer does not meet the suggested requirements, we recommend to not subdivide the workspace. Instead choose Single workspace on the View tab.
- In combination with older graphics cards, the processing speed may be increased by decreasing the size of the user interface.

ATI graphics cards

In ATI graphics cards, the "A.I." setting is activated by default. This may lead to incorrect display of textures in the pCon. planner. Deactivate this setting to improve the display.

Refresh rate

Modifying the refresh rate of your screen may increase the processing speed of threedimensional views. Check which refresh rate setting suits best for your screen before you operate pCon. planner.

2 User Interface

This chapter focuses on the pCon.planner user interface with its different elements. You will gain knowledge of the Application Menu, the Quick Access Toolbar, the Ribbon, the work area and the Status Bar.

Figure 1 displays the user interface with its five elements.
The topics of the chapter are listed in the following table of contents.
planner 6

Figure 1
planner 6

Contents

1. The Application Menu
2. Create a new drawing
3. Open an existing drawing
4. Save a drawing
5. Save a selection
6. Import
7. Export
8. Print
9. Send an e-mail
10. Purge drawing
10.Document Properties
11.Settings
11. The Ribbon
12. Home Tab
13. Edit Tab
14. Insert Tab
15. Presentation Tab
16. View Tab
17. Help Tab
18. The Quick Access Toolbar
19. Add a command
20. Hide a command
21. Remove a command
22. Move the Quick Access Toolbar
23. Work area and Viewports
24. Status bar

2.1 The Application Menu

You can access the Application Menu by clicking the pCon.planner icon. This is the orange button in the upper-left corner of the user interface (see Figure 1).
Figure 1 shows the different commands within the application menu. It is surrounded by a red line.
The links below take you to more detailed information on each of the commands.

Figure 1

2.1.1 Create a new drawing

A new empty document is opened each time you start the pCon.planner. You can also open a new drawing by clicking "New" in the Application Menu.

2.1.2 Open an existing drawing

The right-hand side of the Application Menu lists the "Recent Documents". Simply click to open any of them. To open documents which are not listed here click "Open" and navigate to the desired document.

The pCon.planner supports the following file formats:

- DWG
- DXF(parametric)
- 3DS (3D Studio)
- SAB, SAT (ACIS SAT)
- SKP (SketchUp)
- FML (OFML-scene)
- ENV (OFML-ambience)
- OBK (pCon.basket project)

2.1.3 Save a drawing

To save a drawing click "Save" or "Save as" in the Application Menu. The save dialog window opens. Select a destination and enter the file name. Under "File type" you can choose between different versions of the DWG format (R15 to R17). We recommend to save your data as R17.

2.1.4 Save a selection

Via the entry "Save Selection..." you can export any selection of objects as DWG file.
Click "Save Selection" in the Application Menu. In the file dialog box select the destination directory and enter the output format and a file name.

The dialog "Filetype" allows you to select a version (R15 to R17) of the DWG format. We recommend to save your data as R17.
Press "Save".

2.1.5 Import

Via the „Import"-command in the Application Menu you can import data in DWG, DXF, SAT, 3DS, SKP, FML, ENV- and OBK file formats into your current project.

Follow the following steps:

1. Click "Import" in the Application Menu.
2. In the following dialog box choose the files which are to be imported.
3. Click "Open".
4. You can place the data anywhere in the viewport.

2.1.6 Export

A drawing can be exported as a geometry, or as an image.

Export as geometry

Click "Export" in the Application Menu, then click "Geometry". In the following dialog box navigate to the appropriate folder and assign a file name.

Click "Save".

Export as image file

Click "Export" in the Application Menu, then click "Image". In the following dialog box navigate to the appropriate folder, select a filetype (BMP, JPG, PNG or TIF) and assign a file name. Click "Save"

The dialog box "Image export" opens, where you can specify width and height of the image, aspect ratio as well as image quality and background color. If you activate "Use View background", the image adopts the current background color of the active view.

Click "Generate image". A picture of the active view is now generated.

2.1.7 Print

With the print dialog of pCon. planner you can print drawings on paper or export a drawing as pdf file.

Print a selection

You have the possibility to print only a selection of your drawing. To do so navigate to a suitable view and click "Print" in the Application Menu (see Figure 1). In the submenu "Print" you can select "Print", "Quick Print" and "Print Preview".

When you select "Print" you get to the Print Setup dialog box where you can adjust the printer and the page settings. Press Print to print the current view.

With "Quick Print" you skip the Print Setup dialog and print right away.
Select "Print Preview" to see a preview of the printout. Change the settings if required.

Figure 1

Figure 2 shows the Print Setup options. You can select a printer, the paper size and the margins. In the "Options" you can adjust the quality and the background color of the printout.

If you wish no white background color, you select any other color and activate "Use view background". The printout will adopt the current background color of the active view. Select "Print greyscaled image" to print in greyscale. Furthermore, you can adjust the printer setting under "Properties" or have a preview displayed.

Under "Printer" you can select any real printer or file printer (e.g. pdf printer). Of course, you can only select file formats that can handle image content.
planner6

Figure 2

Figure 3 displays the print preview. The menues, legends, coordinate axes or any other components of the program itself are not printed. In this case the drawing is printed in landscape format. Under "Properties" you can change this setting.

Use the Print button in the upper left corner of the print preview to directly print the image. You don't need to return to the menu. Furthermore, you can zoom in or out on the print preview via the relevant buttons. To quit the print preview press "Close" or ESC.

Figure 3

Print PDF

The print dialog allows you to export a pdf file of the current view. Simply select a pdf printer instead of a real printer. Of course this depends on the software and pdf printers that are installed on your system.

2.1.8 Send an e-mail

Via the entry "E-Mail" in the Application_Menu you can send an open DWG drawing as attachment to an e-mail to friends, colleagues or business partners.

2.1.9 Purge planning

Via the entry "Purge" in the Application Menu you can reduce the filesize your your planning: unused layers, blocks, styles for measurements, texts and lines are removed automatically from your planning file. An example: When you delete an object from your drawing, pCon. planner removes the graphical visualization of the object but not the layers that belong to this object.

To optimize the filesize click "Purge" in the Application Menu.

Figure 1

2.1.10 Document Properties

Via the command "Document Properties" in the Application Menu you can specify the scaling units you want to use for your project. "Meter" is the default. You can also choose between:

- Millimeter
- Centimeter
- Kilometer
- Inch (1 inch $=2.54 \mathrm{~cm}$)
- Feet $(1$ foot $=12$ inches $=30.48 \mathrm{~cm})$

Furthermore, this dialog provides you with information on the DWG version your current planning is saved as.

2.1.11Settings

In the right-hand side of the Application Menu - right next to the „Exit" button - is another button that takes you to the Settings dialog box. On the four tabs "Load", "Save", "Online" and "Misc" you have the following configuration options:

Load Tab

- Scaling: This refers to the opening of geometry data with unknown scaling. You can either determine the standard scaling unit to be applied to all geometry with unknown scaling. The other option is to have a scaling unit selection dialog box open every time you open data with unknown scaling.
- Options: Activation or deactivation of the automatic restoration of the view settings when opening a file.

Save Tab

- Auto Save: Activate or deactivate the auto save function and the save interval.
- Cache: Activate or deactivate the cache for geometry data. We recommend to activate the cache.

Online Tab

- Updates: Enable or disable the automatic check for new versions of the software. Apart
form this, you can also use the manual software updates.

Miscellaneous Tab

- Language: Select the language in which you want to use the program. pCon. planner 6 is available in German, English, French, Italian, Dutch, Portuguese, Romanian and Spanish.
- Directory for image storage: Select a harddisk directory where the textures (graphical data) of a DWG are stored.

2.2 The Ribbon

The Ribbon consists of numerous groups on five tabs and provides all important tools and operations you need for your planning. In this chapter you will learn the details on the Ribbon.

The red line in figure 1 outlines the ribbon.
The links below figure 1 lead you to the single chapters.

Figure 1

Contents

1. Home Tab
2. Clipboard
3. Room
4. Insert
5. Edit
6. Edit Tab
7. Tools
8. Visibility
9. Materials
10. Insert Tab
11. Room
12. Objects
13. Drawing element
4.Tools
14. Presentation Tab
15. Presentation
16. Animation
17. View Tab
18. Render
19. Extended Rendering Options
20. Camera Views
4.Viewports
21. Help Tab
22. Help
23. Info

2.2.1 Home Tab

The Home tab includes all functions and tools for a complete room and furnishing planning. The tab contains four command groups, which you can see in Figure 1. Each group will be described below.

Figure 1

Clipboard

The pCon.planner clipboard allows you to cut, copy and paste objects. It also enables you to create an image of the active view. To do this, click "Copy Image". An image of the active view is copied into the clipboard. Via the Paste command you can open the image in any graphics software.

Figure 2

Room

Figure 3

This group contains all room items of the pCon.planner. The commands allow you to draw walls, insert windows, doors and floors, and arrange adequate illumination. The tools allow for flexible modifications and as such enable accurate and customized designs. How to create rooms and insert windows, doors and so on is explained in detail in the chapter "Design and furnish rooms".

Insert

Figure 4

The "Insert" group enables you to insert numerous object types of the data formats DWG and FML, pictures, text, measures or geometric 2D and 3D elements. The chapters "Objects" and "Drawing objects" explain how to insert elements.

Edit

The "Edit" group includes the dialogs for layers and properties. The latters serves to edit object properties.
Via the layer dialog you can determine the visibility of objects by selecting or deselecting single object layers. Please find further information about layers and properties in the chapter "Functions".

Figure 5

2.2.2 Edit Tab

The Edit Tab allows you to modify objects as well as your entire project. With the tools and materials you can modify the shape and the surface of elements. Furthermore, the visibility options allow you to directly address layers in order to display or to hide them.

Figure 1
Tools

Figure 2

The Tools group involves the standard edit functions of the pCon. planner 6. These enable you to move objects, to modify their size, to rotate, array, group, ungroup and extrude them.
The functions are explained in the passage "Tools" in chapter "Furnishing with the pCon. planner".

Visibility

Figure 3

The functions of this group allow you to influence the visibility of objects. You can display or hide object layers with the layer button and the corresponding quick access. Furthermore, there are three buttons to hide or unhide selections of objects.

A click on the icon "Soften Edges" allows you to make a choice of the number of displayed edges of an objects.

Here you find detailed information about visibility.

Materials

Figure 4

The materials group contains several color and texture tools, the latter of which are used to adjust images that you place over the surface of an object exactly to the shape of the object.
The command "Fill color" is used to assign a certain color to a single object. "Dye Selection" enables you to assign a color to a selection of objects.

The material picker allows you to pick a color or texture of an object and to assign it to another object with only a mouse click.
With a click on the "Materials" icon you can open an online catalog with many selectable materials.

Please find further information about these tools in the chapter "Functions"

2．2．3 Insert Tab

The Insert tab provides all functions regarding the insertion of objects into your planning． The three groups on this tab include＂Room＂，＂Objects＂and＂Drawing elements＂．

	Home	E Edit	Insert	Presentation	View Help			
$\begin{gathered} \text { Wall } \\ \text { Wital } \end{gathered}$	Parameters			pCon．catalog	3D Warehouse	Object Picture A Text		$\begin{array}{ll\|l} 8 & \text { B } & \text { 田 } \\ \text { 回 } & \text { 煰 } \end{array}$
	Height	$2,6000 \mathrm{~m}$						
	Depth	0，2400m						
	Room				Objects	－	Drawing Elements	Tools

Figure 1

Room

Figure 2

This group contains all room items of the pCon．planner．The commands allow you to draw walls，insert windows，doors and floors，and arrange adequate illumination． The tools allow for flexible modifications and as such enable accurate and customized designs．

Objects

Figure 3

The＂pCon．Catalog＂button opens an online client that allows you to access numerous online catalogs． There you load objects directly into your planning． Apart from pieces of furniture，you can download different materials such as fabrics，metals or wood and＂pull＂them onto objects．
The button＂3D Warehouse＂forwards you to the Google 3D Warehouse．

Furthermore，you can insert text and pictures or you can import different file formats such as DWG or FML via the＂object＂button．

Drawing elements

Figure 4

The＂Drawing elements＂group includes a number of two－and three－dimensional objects，such as polyline，circle，rectangles or spheres．Furthermore，you will find here the measture tool and the annotations tool．Further drawing elements can be imported from the＂2D symbols＂web catalog．

Here you find detailed information on how to create and modify drawing elements．

Tools

Figure 5

The Tools group involves the standard edit functions of the pCon. planner 6. These enable you to move objects, to modify their size, to rotate, array, group, ungroup and extrude them.

The functions are explained in the passage "Tools" in chapter "Furnishing with the pCon. planner".

2.2.4 Presentation Tab

The Presentation tab offers various presentation methods and an editor to generate animations.

Figure 1

Presentation

Fullscreen

Presentation
Figure 2

Click the "Fullscreen" button to switch to the presentation mode. This mode works in full screen and allows to navigate through the planning as well as to switch between the perspectives and render modes.

It was designed to present finished designs or designs that are still in progress in a safe and professional way.

Further information on the presentation mode can be found in the chapter "Presenting the planning".

Animation

Figure 3

The Animation group contains three buttons: "Edit", "Play" and "Record".

The "Edit" button opens the animation editor which allows you to generate animations.

The "Play" button opens a micro player to play the animation.
And the "Record" button opens a dialog box which allows you to play and record an animation and to change the animation settings.

Further information on the presentation mode can be found in the chapter "Presenting the planning"

2.2.5 View Tab

View tab

The View tab (Figure 1) provides a number of rendering and camera modes, as well as workspace layout options. Also found here is the Zoom tool, which allows you to adjust the view of your planning.

Figure 1

Render

The pCon.planner allows you to render and display your drawings in different rendering modes. Each rendering mode has distinct characteristics to suit specific needs. For more information please refer to chapter "Rendering modes".

Figure 2

Extended Rendering Options

Figure 3

Click on the icon highlighted in Figure 3 to open the extended rendering options dialog box. It contains a Presentation tab, a Quality tab and a Miscellaneous tab, all of which allow you to further manipulate the planning. For more information click here.

Camera Views

Figure 4

The camera views define the angle The Camera group provides two- and threedimensional camera projection modes for viewing your planning within the viewports. Additionally to the standard camera projection modes you can create individual perspectives via the "Camera" button. Detailed descriptions on the camera projection modes are found here.
The Zoom tool is also found in the Camera group. For more information on how to use the Zoom tool please click here.

Viewports

Figure 5

The Viewports group offers six workspace layout options. You can choose between e.g. a single workspace, a horizontal split or the display of four workspaces. To each workspace you can individually assign camera angles and rendering modes. For more information please click here.

2.2.6 Help Tab

The Help tab contains six buttons which will be briefly explained as follows.

Figure 1

Help group

Help

The Help button guides you to this Online help providing comprehensive information on the software and instructions on how to use it.

The Online button is a link to the pCon.planner homepage. Here you can find comprehensive product information, news, updated downloads as well as a gallery.
Click the Online Videos to be directed to the download website of the pCon.planner video tutorials. These provide some extra help on using the software.

If you face problems with the software or have suggestions please feel free to contact us. Just click the "Contact" button and you will be forwarded to a contact form.

Updates

Click this button to check if software updates are available. This is the manual alternative to the automatic update service, which you can access and alter via the Application Menu.

Info group

System info

Click the System Info button to open a window with information on your computer. This provides information e.g. on your memory and processor. You can send this information to the EasternGraphics Support if you encounter problems with the pCon.planner on your computer. This information often helps us to solve the issue faster.

About
Click this button to display the pCon.planner splash-screen. This contains information on the current version of the software and on copyright.

2.3 The Quick Access Toolbar

The Quick Access Toolbar is located in the upper-left corner of the user interface next to the Application Menu button. The Quick Access Toolbar allows you to quickly access frequently used commands.

Figures 1 displays the Quick Access Toolbar which is framed with a red line.

Figure 1

Contents

1. Add a command
2. Hide a command
3. Remove a command
4. Move the Quick Access Toolbar

2.3.1 Add a command

You can easily add any command from the Ribbon to the Quick Access Toolbar.

1. Move the cursor to the appropriate tab to display the command or gallery you want to add to the Quick Access Toolbar.
2. Right-click the command or gallery, then click "Add to Quick Access Toolbar" or "Add Gallery to Quick Access Toolbar" on the shortcut menu.

The command or the gallery is now displayed in the Quick Access Toolbar.

Note

A gallery is a collection of functions. The Room items gallery contains e.g. windows, doors, glass panels, and lighting options.

Once added to the Quick Access Toolbar, a gallery is displayed by an icon with an arrow pointing down.

2.3.2 Hide a command

You can hide or unhide commands you have added to the Quick Access Toolbar by clicking the down arrow to the right of the toolbar. Checked commands are displayed in the Quick Access Toolbar, unchecked commands are not.

Figure 1

2.3.3 Remove a command

Commands can be removed from the Quick Access Toolbar e.g. when not needed as frequently any more.

To do this, right-click the relevant command or gallery in the Quick Access Toolbar, then click "Remove from Quick Access Toolbar" on the context menu. The command disappears from the toolbar.

Note

You can remove the default commands for "Undo the last operation", "Redo the last undo operation" or "Save the current drawing" from the Quick Access Toolbar. To recover these commands right-click the Quick Access Toolbar, then click "Reset Quick Access Bar"

2.3.4 Move the Quick Access Toolbar

The default location of the Quick Access_Toolbar is above the Ribbon next to the Application. Menu button. You can also place the Quick Access Toolbar below the Ribbon. To move the Quick Access Toolbar, right-click on any command on the Quick Access Toolbar or the Ribbon and click "Show Quick Access Toolbar Below the Ribbon" on the context menu.

Likewise you can move the Quick Access Toolbar back to its original location above the Ribbon via the shortcut menu.

2.4 Work Area and Viewports

The work area of the pCon. planner (framed red) is located below the Ribbon. This is where you draw and furnish rooms. With the command of the viewports group located on the view tab you can split the work area into up to four viewports. Figure 1, for example, shows the four viewports option. Each of the viewports can be assigned a different rendering mode and a different camera angle. You can maximize any viewport by clicking the little angle in the upper-right corner of the relevant viewport (Figure 1). Click the angle again to return to the original display of the work area.
The viewport with the red indication of the camera perspective is the active one. All planning steps you carry out directly affect this viewport. With a click onto the red indication of the camera view you can change the current camera angle, e.g. from "top" to "right".
The splitting of the work area allows to look at the planning from different angles and in different rendering modes at the same time.

Figure 1

You can use the mouse or the following keyboard shortcuts to select the six commands in the „viewports" group.

Keyboard Shortcut	Description	Command in the menu
Ctrl + F1	The work area switches to the „Single" view . The active viewport occupies the entire work area.	
Ctrl + F2	Splits the work area into two vertical viewports.	\square
Ctrl + F3	Splits the work area into two horizontal viewports.	\square
Ctrl + F4	Splits the work area into four viewports.	
Ctrl + F5	The work area switches to the "Overview" split.	\square
Ctrl + F6	Splits the work area into „One + three"	\square

Note

The "+" between the keys indicates that both keys need to be pressed simultaneously to become effective.

2.5 The Status Bar

The status bar at the bottom of the application visualizes e.g. the loading progress when files are opened or imported. It also states the file name and - as seen in Figure 1 - gives you practical hints on the different tools in the Ribbon. Additionally, you can enable the snap mode by a click on the magnet symbol. The buttons at the right side start the Walkthrough Interactive mode (footprint icon) and the Fullscreen mode (screen icon).

Figure 1 shows the Status Bar, framed with red lines.

Figure 1

3 Furnishing with the pCon.planner

This chapter deals with the interior design and furnishing planning. From scratch you will learn how to carry out the planning, which important things you need to keep in mind and how to efficiently and successfully work with the software.

The following table of contents gives you an overview of the topics covered in this chapter.

Contents

1. How to use your mouse and keyboard
2. Mouse
3. Keyboard
4. Select objects
5. Object structures
6. Options of selection
7. Tool and functions
8. Tools
9. Functions
10. Navigation in the planning
11. Zoom operations
12. PAN mode
13. Orbit mode
14. WASD navigation
15. Walkthrough interactive mode
16. Camera settings and rendering modes
17. Camera angles
18. Rendering modes
19. Adjust rendering
20. Aligning objects
21. Coordinate system and reference point
22. Aligning objects using the User Coordinate System
23. Activating and deactivating axes
24. Using axis snap
25. Using object snap
26. Create and furnish rooms
27. Walls
28. Doors, windows and wall openings
29. Floors
30. Objects
31. Illumination
32. Drawing elements
33. Presenting the planning
34. Presentation
35. Animation

3.1 How to use your mouse and keyboard

This article is about the functionality of mouse and keyboard in the software. We recommend reading this article before you start designing with the pCon.planner.

Contents

1. Mouse
2. Left mouse button
3. Right mouse button
4. Scroll-wheel
5. Keyboard
6. Enter values, measurements and operators
7. Keyboard shortcuts

3.1.1 Mouse

Left mouse button

Same as most software, click the left mouse button to operate commands, tools and functions.

Right mouse button

The right mouse button serves three purposes in pCon. planner:

1. A single click of the right mouse button in the viewport opens the Context Menu. This offers you several actions, depending on the context of the current work step, for example to align the User Coordinate System, cancel an action, copy the object or lock an axis. The entries of the context menu will be mentioned in many chapters of this online help.

Figure 1 displays the entries of the context menu that are available for moving a wall.

Figure 1
2. You can customize the Quick Access Toolbar by right-clicking the Toolbar or Ribbon. For more information click here.
3. Within the viewports, a right-click will navigate you through the planning with the PAN function . Just keep the right mouse button pressed and move the mouse. For more information switch to the chapter "Navigating in the planning".

Scroll-wheel

With the scroll wheel you can navigate_through_the_planning_ project. It changes the perspective by either rotating around objects (Perspective view) or zooming (all views).
If your mouse has a button instead of a wheel, only the rotating function is available to you. Forzooming please use the Zoom tool in the Camera group on the View tab.

Note

1. If you keep the mouse motionless over an object or the planning space, tool tips pop up giving information on the exact mouse position over the object.
2. If your mouse does not have a scroll wheel, click the left mouse button while keeping the right mouse button pressed in order to switch to the orbit mode (swiveling movement).

3.1.2 Keyboard

Entering values, measurements and operators

When creating or editing objects (drawing, moving, scaling and so on), you can use the keyboard to enter values, measurements or operators, e. g. "+", "-", "*" and "/".

Values

When using tools, value input fields are displayed close to the mouse pointer (Figure 1). You can change the values by typing in the numbers with your keyboard. pCon.planner highlights the active value. In Figure 1 the upper value is active.

Press "Enter" to confirm the entry of the value. Afterwards the next unfixed value will be highlighted and can be modified.
To switch between the values use the "Tab" key.

Figure 1
Here a rectangle room is being created. Right to the mouse pointer you can see the values $2,9248 \mathrm{~m}$ and $2,0980 \mathrm{~m}$. They indicate the length and the width of the room.

When entering a value via the keyboard, the number that is currently highlighted in red will be changed first. With the Tab key you can switch to the next number.

Confirm each entry of a value with "Enter".

Figure 1

Measurements

If you do not want to use the default unit of measurement (e. g. meter) you can enter a new unit right after the value. The following units of measurement are possible:

Measurement	Entry
Millimeter	mm
Centimeter	cm
Meter	m
Kilometer	km
Inch	$"$
Foot	\prime
Angle	\circ

Measurements can be entered at the following positions:

- for all objects (walls, room elements, drawing elements...) right behind the values in the value input field.
- for walls in the input fields for "Hight" and "Depth" on the Insert tab, Room group.
- for all drawn objects in the Properties dialog box right behind the values.

Operators

Another possibility to influence the measurements of an object is to use operators, e. g. "+", "-", "*" and "/", in combination with a value.

The operator always refers to the currently active value. For example, entering "+2" in figure 1 would increase the width of the room by 2 meters.

After entering the value you can of course enter any unit of measurement. Thus it would be possible to make an entry like "-3,5m".

Keyboard Shortcuts

For many tasks, the pCon.planner provides keyboard shortcuts. They are listed - in alphabetical order - in the following tables.

Table 1: Keyboard Shortcuts for pCon.planner 6

Shortcut	Description
Alt	Move the wall end point when drawing a wall (context menu)
Alt + F4	Quit pCon.planner
Esc	Cancel an action / quit the presentation mode
Delete	Deletes the current selection of objects
F1	Open the online help Repeat using the previously used tool, or repeat inserting room items such as door, window, floor, glass panel or lighting
F2	Open the pCon.catalog client
F3	Open the layer dialog box
F4	Open the properties dialog box
F5	Open the box for inserting objects
F7	Enable / disable "Walkthrough Interaction Mode"
F9	Open the software settings dialog box
F11	Enable / disable axis snap
G	Enable / disable object snap (context menu)
H	Move the reference point (context menu)
Space	Activate Looking around in the Walkthrough Interactive
Space	

	Mode
R, F	R: Navigate upwards in the Perspective View F: Navigate downwards in the Perspective View
S	Navigate backwards in the Perspective View
Ctrl	Copy selected items (context menu); Select more than one object
Ctrl + +	Zoom in on active viewport
Ctrl + -	Zoom out on active viewport
Ctrl + A	Select all
Ctrl + C/Ctrl + Delete	Copy selected elements
Ctrl + D/Delete	Delete selected elements
Ctrl +E	Start the Extrude tool after previous selection of objects
Ctrl +F 1	Switch to single viewport
Ctrl + F2	Devide the work area into two horizontal viewports
Ctrl + F3	Devide the work area into two vertical work viewports
Ctrl + F4	Devide the work area into four viewports
Ctrl + F5	Devide the work area into "view"
Ctrl + F6	Devide the work area into "one + three"
$\mathrm{CtrI}+\mathrm{G}$	Group a selection
Ctrl + I	Invert selection
Ctrl + L	Start the Scale tool after previous selection of objects
Ctrl + Space	Show full extend of the active viewport
Ctrl + M	Start the Move tool after previous selection of objects
$\mathrm{Ctrl}+\mathrm{N}$	Create new drawing
$\mathrm{Ctrl}+\mathrm{O}$	Display the Open dialog box to load files
Ctrl + R	Start the Rotate tool after previous selection of objects
Ctrl + S	Save current drawing
Ctrl +U	Ungroup selected items
Ctrl + Shift + C	Copy a picture of the active view
Ctrl + Shift + F1	Switch to camera view "Perspective
Ctrl + Shift + F2	Switch to camera view "Front"
Ctrl + Shift + F3	Switch to camera view "Top"
Ctrl + Shift + F4	Switch to camera view "Left"
Ctrl + Shift + F5	Switch to camera view "Right"
Ctrl + Shift + F6	Switch to camera view "Rear"
Ctrl + Shift + F7	Switch to camera view "Bottom"
Ctrl + Shift + F8	Switch to camera view "North East"

Ctrl + Shift + F9	Switch to camera view "North West"
Ctrl + Shift + F10	Switch to camera view "South East"
Ctrl + Shift + F11	Switch to camera view "South West"
Ctrl + Shift+ Space	Show full extend of all viewports
Ctrl + Shift + S	Open the Save-as dialog box
Ctrl +V/Shift + Insert	Paste selection
Ctrl + X/Shift + Delete	Cut selection
Ctrl +Z	Undo an action
Ctrl + Shift +Z	Redo the last undo operation
Ctrl + Y	Perform Array tool
Tab	Move between values, that appear next to the mouse pointer when using a tool, e. g. values for height, length, depth, curve, or angle
Shift	Lock / unlock axis (context menu)
Shift + F1	Switch active viewport to the Wireframe Mode
Shift + F2	Switch active viewport to the Hidden Lines Mode
Shift + F3	Switch active viewport to the Colored Mode
Shift + F4	Switch active viewport to the Conceptual Mode
Shift + F5	Switch active viewport to the Shaded Mode
Shift + F6	Switch active viewport to the Realistic Mode
V	Rotate reference point / return to original orientation (context menu)
W, A, S, D (or arrow keys)	W or down arrow: Move forward in the Perspective view A or left arrow: Turn to the left in the Perspective view S or up arrow: Move backwards in the Perspective view D or right arrow: Move to the right in the Perspective view

Table 2: Keyboard Shortcuts for pCon.catalog

Shortcut	Description
ALT + C or Ctrl + B	Open Bookmark Manager
ALT + S	Open Settings dialog box
ALT + M	Go to home page
ALT + left arrow backspace ALT + right arrow	Go back one page
ALT + Z or Ctrl + D	Go forward one page
Esc	Set bookmark
F6	Stop page loading input focus at address bar

F5 / Ctrl + R	Reload page
Ctrl +T	Open new tab
Ctrl +P	Open print dialog
Ctrl +W	Close current tab (if more than one tab is displayed)
Ctrl.+	Switch tab rightwards
Ctrl,+	Switch tab to the left

Note

1. If two or more keys are separated by a plus sign (+), they need to be pressed simultaneously to activate the shortcut.
2. You may know the WASD keys from navigation in some computer games. Alternatively to WASD you can use the arrow keys. For more information on WASD click here.

3.2 Select objects

Working with objects in your planning always requires to first select them. That's why this chapter deals with the different methods of selecting objects as well as the object structures that are directly related to selection.

Contents

1. Object structures
2. Methods of selecting
3. Selection by mouse click
4. Selection by keyboars shortcuts
5. Selection by selection rectangle

3.2.1 Object structures

Every element that you create with, or load into pCon.planner, consists of variable amounts of edges (lines) and surfaces. The rectangle in Figure 1, for example, has one surface which is bounded by four edges.

The edges are defined by a number of snap points, which become visible when moving the mouse pointer over any edge.
Snap points are found at the ends and mid points of an edge, at a point of intersection, but also all along an edge (displayed as an X in Figure 1).

These snap points are helpful for a number of operations. They are especially important for the alignment of objects. For more information clickhere.

Figure 1

3.2.2 Methods of selecting

Objects can be selected by clicking or by dragging selection rectangles around the objects. Both methods are explained below:

Selection by mouse click

One option for selecting objects in the pCon.planner is via mouse-click. Simply click the surface (if applicableor the edge of an object.
If you want to select more than one object, hold down the Ctrl key as you click additional objects. With this method you can select any number of elements within the planning project. The advantage of this selection method is that you can accurately determine which objects you want to select.

Figure 1 shows four rectangles, two of which have been selected by mouse-click while holding down the Ctrl key (highlighted in red).

Figure 1

Note

1. Selected objects are highlighted with a color, which makes them distinguishable from unselected objects.
2. If you are working in the Wireframe mode, there are no surfaces between the edges. Therefore only the edges are available for clicking.

Selection by keyboard shortcuts

You can use the keyboard shortcut "Ctrl + A" to select all objects of a drawing. "Ctrl + I" inverts a selection and "Esc" cancels the selection.

Selecting by selection rectangles

The second option for selecting objects is by dragging a rectangle around them. Hold the left mouse button and move the mouse pointer. This generates a red or green rectangle.
The rectangle is red when you start in the upper-left and drag it to the lower-right. This selects only objects that are entirely within the rectangle. In Figure 3, therefore, only the two objects on the top are selected.

When you start the rectangle in the lower-right and drag it to the upper-left, it is green. This selects all objects that are entirely and partly within the rectangle. In Figure 3, therefore, all four objects are selected.

Figure 2

Figure 3

3.3 Tools and functions

The pCon.planner provides you with different instruments to customize your room and furnishing elements according to your own plans and ideas.
The first chapter introduces the pCon.planner tools. The knowledge of their basic modes of action will enable you to do your first experiments with the software.

The second chapter shows you which functions can be applied to your objects and what they are useful for.

Contents

1. Tools
2. Draw
3. Move
4. Rotate
5. Scale
6. Extrude
7. Curvature
8. Array tools
9. Functions
10. Group and ungroup objects
11. Control visibility
12. Edge softening
13. Assign colors
14. Assign and adapt materials
15. Edit properties

3.3.1 Tools

This chapter introduces the six pCon.planner tools which you need to modify objects. The focus of this chapter is on basic explanations of the way these tools work to get you started with the software as easily as possible.

For more detailedinformation on how to work with the tools please go to chapter "Create and furnish rooms".

3.3.1.1 Draw

With the Drawing tool you can create walls and a number of two-dimensional (2d) and three-dimensional (3d) objects.
These are the basic steps for drawing:

1. In the Ribbon (Edit or Insert tabs) click the wall icon or one of the 2d or 3d elements, e. g. line or rectangle, to start the relevant drawing tool.
2. Move the mouse pointer into one of your viewports. The regular mouse pointer now changes to one of the symbols in Table 1. The coordinates for the position of the mouse pointer as well as the position of the green, red and blue axis are displayed.
3. Click the viewport to mark the starting point of the object. Alternatively you can enter exact values via the keyboard.
4. Move the mouse pointer across the viewport. This adjusts the size of your object in all applicable dimensions (length, width, depth).
5. Click again to finish the drawing process.

Along with the freehand drawing described above you can also enter. precise values. This way you can accurately assign starting point, length, width and depth of the object.

Enter the values by typing the numbers on the keyboard, and then press Enter. Press the
Tab key to jump between the displayed values.

Table 1

| Wall | Rectangl
 e | Polygon | Line | Circle | Ellipse | Arc | Point | Measurements Spere |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Cone

Note

1. For the objects wall, polygon, line and measurements the drawing tool will not be quitted right after creating the element. Thus you can continue to create further elements right away.
2. To quit or cancel a drawing process of walls, polygons, lines or measurements use the entries of the context menu. Press the right mouse button to open the context menu.

3.3.1.2 Move

Elements within your planning project can be moved to be positioned and arranged as you wish.

Figure 1 shows the moving of a wall (red object). It also features a reference point, the starting point of the movement, and the vertical and horizontal distance of the current position of the mouse pointer to the reference point.

You have three options for moving an object, which will be described as follows.

Figure 1

Option 1:

1. You select the object to be moved and click it again (edge or surface) to activate the Move tool.
2. Click on any point in the viewport and move the mouse to re-position the object in the planning.
3. Click where you want to place the object to finish the move.

Option 2:

1. Select the object to be moved, and then click the Move tool in the Tools group (Edit tab).
2. Click the desired position of the object to move the object.
3. Left-click to finish the move.

Option 3:

1. Click the edge of an unselected object and hold the left mouse button. Begin the move.
2. Once you have started the moving, you can let go of the left mouse button and still move the object around.
3. Click where you want to place the object to finish the move.

Note

1. Figure 1 shows the starting point of the movement, which is where the mouse pointer was at the time of clicking to start an action.
2. Along with the freehand moving options as described above you can enter precise values. This way you can accurately assign the position of the object. Enter the values by typing the numbers on the keyboard, and then press enter. Press the tab key to jump between the displayed values.

3.3.1.3 Rotate

You have two options for rotating objects in the planning project.

Option 1:

1. Double-click an object to start the Rotate tool.
2. The reference point - surrounded by a yellow circle - is located where you double-clicked the object (Figure 1).
3. Click again to define the location of the starting point for the rotation (Figure 1).
4. At this point you start with the rotation of the object by moving the mouse pointer
5. The number right next to the mouse pointer is the value of the rotation in degrees (Figure 1).

Figure 1
6. At the desired angle click again to finish the rotation.

Option 2

1. Select the object to be rotated.
2. Click the Rotate command in the Tools group on the Edit tab.
3. Click anywhere in the planning to start the rotation tool.
4. Move the mouse pointer to the desired angle and click to determine the starting point of the rotation.
5. Move the mouse pointer to rotate the object to the desired angle and click to finish the rotation.

Note

Along with the freehand rotation as described above you can also enter precise values. This way you can accurately assign starting point and angle of the rotation.
Enter the values by typing the numbers on the keyboard, and then press enter. Press the tab key to jump between the displayed values.

3.3.1.4 Scale

With the Scaling tool you can increase or decrease the size of the objects in the planning. The tool is located in the Tools group on the Edit tab.
There are two ways to scale objects. You can either use Scale Interactors or determine a distance to influence the dimensions of the elements. Both methods are explained below. The third part of this article explains the use of scale axes. They help you to scale objects proportionally or only in one dimension.

Scaling with Interactors

1. Select the object that is to be scaled.
2. Click the Scale tool in the Tools group on the Edit tab. The corners of the selected object appear as yellow dots (2D) or yellow balls (3D) - so-called Scale Indicators (see Figure 1).
3. To change the size of the object, click the appropriate indicator and move the mouse pointer.
4. Click again to finish the scaling.

Figure 1

Figure 2 illustrates the proportional increase of a rectangle using the interactors and the diagonal scale axis. (see below)

You can see the starting point (from where the scaling starts). In the catercorner of the starting point you can see the reference point (zero point).

The two values next to the cursor indicate the current size of the object (in relation to the reference point), which modify when you move the mouse.

Furthermore you can see a diagonal axis which helps you to scale the rectangle proportionally and a red arrow which indicates the direction of the scale process.

Figure 2

Scaling with distances

1. Select the objects you want to scale.
2. Click "Scale" in the Edit tab to start the scale tool. The corners of the selected object appear as yellow dots (2D) or yellow balls (3D) - so-called Scale Indicators (see Figure 1).
3. Click in the viewport to define the starting point of the distance that serves as basis for the scale process.
4. Move the mouse to determine the distance and click again to set its end point.
5. Now move the mouse within the viewport to start the scale process of the object. If you want to use the scale axes to modify the dimensions of an object (see bottom article of this page), you need to move the mouse around the distance line between reference point and start point. Depending on the position of the cursor an axis for uniform or for unidimensional scaling will be displayed. For better distinguishing the axis for the unidimensional scale process is always yellow.

Figure 3 illustrates the increase of a $10 \times 10 \mathrm{~m}$ rectangle (dotted line) to a size of $15 \times 15 \mathrm{~m}$.

First the virtual line described in items 3 and 4 was defined. It is represented by the distance between reference point and starting point and is 10 m long.
Then the mouse was moved along the uniform scale axis (yellow) up to a length of 15 m .

The movement of the axis leads to the proportional increase of the rectangle.
A final mouse click would now confirm the new size of $15 \times 15 \mathrm{~m}$ and finish the scale process.

Figure 3

Using scale axes

As already mentioned above, you can use scale axes to scale objects. They help you to modify the size of an element proportionally or in only one direction.

The proportional (uniform) scale axis becomes visible as soon as the cursor is moved along the virtual line between starting and end point. Figure 4 illustrates the scaling of a $\mathbf{2 m} \mathbf{x} \mathbf{2 m}$ square. The upper right interactor was used as starting point. If you move the cursor along the line between starting and reference point, the square will be scaled proportionally.
Furthermore, there are a horizontal and a vertical scale axis. They become visible whenever you move the cursor by $\mathbf{0}^{\circ}, \mathbf{9 0 ^ { \circ }}, \mathbf{1 8 0} 0^{\circ}$ or $\mathbf{2 7 0} 0^{\circ}$ around the starting point.

Figures 5 shows the horizontal scale axis along which the $2 \mathrm{~m} \times 2 \mathrm{~m}$ square is made wider (not longer).
If you moved the mouse in the vertical direction, a vertical scale axis would become visible. You could then modify the length.

Figure 4

Figure 5

Note

1. Along with the freehand scaling described above you can also enter precise values.
2. The context menu enables you to enlarge an object by a factor. Click "Input Factors " in the context menu.
3. The Scale Interactors can be enabled or disabled in the context menu. To disable them click "Hide Scale Interactors" in the context menu.
4. Please click here for information on scaling walls.

3.3.1.5 Extrude

Extrusion turns enclosed two-dimensional objects into three-dimensional structures.

You can turn squares into cubes or circles into columns.

Figure 1 shows a rectangle that was extruded into a cuboid.
With pCon.planner you can extrude rectangles, circles, ellipses, polygons and polylines (interconnected lines).

Figure 1

Follow the steps below to extrude such structures:

1. Select the object you want to extrude.
2. Click the Extrude tool in the Tools group on the Edit tab.
3. Move the mouse pointer to the surface or edge of the two-dimensional object. You will see the mouse pointer change its shape (Figure 1).
4. Click the edge or surface to start the extrusion process.
5. Move the mouse pointer to extrude the object or enter a precise values.
6. Click to finish the extrusion or press Enter to confirm the value.

Note

1. Once extruded, an object cannot be extruded further.
2. If you want to extrude two-dimensional objects that were drawn without a surface, or if you want to extrude polylines, you have to click the edges to start the extrusion process.

3.3.1.6 Curvature

The Curvature tool allows to curve walls or arcs in a wall via Curve Interactors.

This tool only applies to walls and is therefore not found in the Tool group on the Edit tab.

Figure 1 shows a curved wall including height (H) and radius (R).

For more detailed information on how to curve walls please refer to chapter Curving walls.

Figure 1

3.3.1.7 Array tool

The Array tool allows you to copy an object or group of objects unlimited times in a drawing. The Array tool applies to all types of objects (walls, doors, furniture...)
This tool makes it very easy for you to create window fronts or to arrange chairs in the theater style.

The array tool is described below with an example (figures 1 to 4).

1. Select the object of which you want to create an array.
2. First define the axis along which you want to align the array of objects (steps 2 and 4). The axis requires two points:

Click "Array" in the Tools group on the Edit tab. Define the first point of the axis by mouse click on the desired point in the viewport.

In our example the first point coincides with the upper left corner of the object (Figure 1).
3. Define the second point of the axis by mouse click or enter the exact distance and angle. Please note that the values you enter refer to the coordinate system in point 1 (see black circle with highlighted axes in Figure 2).

In our example the second point is

Figure 1

Figure 2
placed $0,3 \mathrm{~m}$ away from point 1 . The angle is 0°. Click to confirm this point.
4. After you defined the second point the origin of the coordinate system is moved to this point.

Furthermore, a copy of the original object was created. Its upper left corner coincides with point 2.

The current distance (highlighted in red) between the two objects is 0 m . You can now change the distance by entering a new value or moving the copy manually.

We recommend you enter the distance between original object and its copy by keyboard.
5. In our example we defined a distance of $0,2 \mathrm{~m}$. Now enter the number of copies that are to be placed in the array.

Type in a number and confirm by Enter.

Figure 4 illustrates a completed array that consists of four elements with a distance of $0,2 \mathrm{~m}$ between each object.

3.3.2 Functions

This chapter introduces the different functions of the pCon.planner and explains how to use them effectively.

Contents

1. Group and ungroup objects
2. Control visibility
3. Global edge softening
4. Assign colors
5. Assign and edit textures
6. Edit properties

3.3.2.1 Group and ungroup objects

The Group and Ungroup commands are found in the Tools group on the Edit tab. They allow to group or ungroup several elements before further processing.

Single objects can consist of several elements. A table, for example, may consist of a table top, some framework and several legs. The Ungroup function can break a table into its pieces to allow adjusting each pieceindividually.
Grouping all elements, on the other hand, allows to modify the table as a whole, e.g. the size of the table.

The Group and Ungroup functions therefore are a prerequisite for processing objects at a certain level of detail.

To group or ungroup elements follow the steps below.

1. Select the object or group of objects that are to be grouped or ungrouped.
2. Click the Group or Ungroup commands in the Tools group on the Edit tab.

3.3.2.2 Control visibility

pCon. planner 6 offers two methods to control the visibility of objects:

1.via layers

2. via selections.

Both methods are explained below.

Layers

Layers dialog box

Similar to other software, the two- and threedimensional data in pCon. planner is organized in variable numbers of layers to comply with the specific needs of designing.

Click the Layer button (group Visibility / Edit tab) to open a dialog box with all current layers in the planning project (Figure 1). You can decide which layers are to be visible and which are not.

Layer Name $/ \sim$	Visible
0	∇
72_EGR_BASE_PRIMITIVE	∇
72_EGR_INSERT	∇
72_EGR_ROOM5_D2_WALL	∇
72_EGR_ROOM5_D2_WALLELEMENT	∇
72_EGR_ROOM5_D3_FLOOR	∇
72_EGR_ROOM5_D3_WALL	∇
72_EGR_ROOM5_D3_WALLELEMENT	∇
72_EGR_ROOM5_LIGHT	∇
ASHADE	∇
4 IIII	\square

The more complex the drawing the more often the layers dialog box is needed. It may even be needed permanently. Therefore the Layers dialog box can be docked onto every side of the work area and minimized. Just drag the dialog box to the required position. Figure 2 illustrates the Layers dialog box which is docked onto the left side of the work area.

Figure 2

Quick Access to layer control

Click the arrow below the layers button to open the Quick Access to the layer control.
This feature enables you to show or hide 3D-walls, lighting elements, cameras as well as all objects on 3D and 2D layers. You do not need to open the Layers dialog. box where you would have to select the items manually.

Figure 3 illustrates the currently active layer (lighting highlighted) and the two inactive layers.

Selections

Hide Selections and Unhide

The Hide Selection command (Visibility group on Edit tab) hides all selected objects within a planning. This is especially helpful when you want to temporarily simplify your planning to get easier access to certain elements.
Click the Unhide tool to make all objects visible that you have previously hidden.

Hide Others and Unhide

The Hide Others command hides all elements that are not selected.
Click the Unhide tool to make all objects visible that you have previously hidden.

Note

Changes that you carry out in your planning only affect visible elements. Hidden objects areexcluded from operations. Saving the document, however, saves all data, including hidden objects.

3.3.2.3 Edge softening

Objects in pCon. planner 6 are constructed of edges and surfaces. You can determine the rendering mode as well as the amount of edges to be displayed. Edges can be displayed in all rendering modes now, including the Concept mode, the Shaded mode and the Realistic mode. Further information can be found in the chapter "Show outlines". On the other hand you can reduce the amount of displayed edges of all objects of your drawing, but also of single selected objects. This is done with the function "Soften edges".

Reducing the edges is possible in the range of $\mathbf{0}$ to $\mathbf{1 8 0}$ Degrees. The lower the value the more edges are displayed. At 0 Degrees all edges of the object are displayed. At 180 Degrees only the frame lines are displayed.

The default setting of the frame reduction is 20 Degrees. Thus, specific small details of objects are not made irrecognizable by too many lines.

But the degree depends on your specific demands, the individual use of the objects and the object itself. So it is more efficient to adjust the degree of the edge softening individual for every object.

To soften the edges for all objects, open the View tab. Click the small down arrow in the Render group (Figure 1).
igure 1
The Rendering dialog box opens. Select the "Quality" tab. The global

edge softening is frames in red in figure 2. You can enable or disable the global edge softening. When you enable it you can set an angle between 0 and 180 Degrees. Your setting applies to all objects except to those that you have already assigned an individual edge softening.

Figure 2

Figure 3

Figure 4

When you want to soften the edges of a single object, select the object and click "Soften edges" on the Edit tab. (Figure 3)

A context menu opens. Set a soften angle between 0 and 180 Degrees. Click "Apply" to assign the setting to the selected object independently from the global edge softening. Click "Reset Softening" to automatically apply the global setting.

If you click "No Softening" the Soften angle will automatically switch to $\mathbf{0}$ Degrees so that the maximum amount of edges is displayed.

The following pictures demonstrate the use of several settings. They are only examples. The number of variations is uncountable.

Figure 5 shows an office chair in the Realistic mode without the edges displayed.

The following 6 figures illustrate the functionality of the "Soften edges" function.

Please note that each setting looks different with every
object. There are no optimum values for the single purposes.

Figure 5
Figure 6 shows the same office chair in the Hidden Line mode and in three different stages of edge softening.

Figure 6
The soften angle is
0°.
This is interesting for construction.

Figure 7
Figure 7 displays the same chair with a soften angle of 20°. This is the default angle.
This setting is suitable for presentations.

Figure 8
In this case the soften angle is 180°.

This setting is applicable for simple concept studies.

The following pictures shows the same office chair in the Realistic mode with displayed edges in three different intensities.

Figure 9
Office chair with displayed edges and without edge softening.

This is primarily suitable for construction purposes.

Figure 10
In this picture the soften angle is 20 Degrees.

This is also suitable for construction purposes

Figure 11
Figure 11 shows the office chair with the max. soften angle - 180 Degrees.

This setting is very good for the presentation.

Note

You may as well select several objects at the same time and apply the same soften angle to the whole selection.

3.3.2.4 Assign colors

The Colors tool of pCon.planner 6 was designed for a number of different applications and can therefore be used for various purposes.

Assign colors to single objects

Via the function "Fill Color" you can assign colors to the objects in your planning.

To do this, follow the steps below.

1. Click the Color button (Materials group on the Edit tab) and click one of the provided colors or define a color.
2. When you move the mouse pointer onto the work area, its shape turns into a color bucket
which tells you that the tool is active.
3. Click the objects of which you want to change the color.
4. To quit the color tool press the Esc key or click another tool.

The function "Fill Color" is also enabled when you select a material with the "Material picker" in order to assign it to another object. Please read more in the chapter "Material Picker".

Dye selections

With the function "Dye Selection" you can assign the same color to groups of objects. This function is particularly useful when you draw floor-space plans since you do not have to dye each object individually.

To dye selections, follow the steps below:

1. Select an arbitrary number of objects in your drawing.
2. Click "Dye Selection" (Materials group on the Edit tab) and click one of the provided colors or define a color.
3. The selected color will now be assigned to the selection of objects.

Preallocate colors to objects

Some objects can be preallocated a color. That means that you can assign a color to certain objects before you draw them. This saves you time because you do not need to dye them afterwards. This is possible for the following objects:
planner 6

- Rectangle
- Polygon
- Line
- Circle
- Arc
- Ellipse
- Cone
- Sphere

To preallocate a color to an object click the arrow that is surrounded by a black circle on Figure 1 (Drawing Elements group on the Insert tab). Then click one of the provided colors or define a color.

Figure 1

3.3.2.5 Assign and edit textures

Contents

1. Assign textures

1. Pictures
2. Materials catalog and MATZ data
3. Material Picker
4. Edit textures
5. Textures for areas
6. Reset projection
7. Modify texture detail
8. Adjust textures to 3D objects
9. Mapping options
10. Planar mapping
11. Cylindermapping

Assign textures

In addition to colors you can assign textures (materials) to the objects. Suitable are picture formats, such as PNG, JPG, BMP but also the MATZ data as it is available in pCon. catalog. The latter are a texture format which was developed to "cover" the surface of objects.

Pictures

You can assign pictures to objects by drag \& drop. Just select a picture and drag it onto the surface of an object. You can use pictures that you find on websites as well as pictures from a local directory (folder).

Figure 1 illustrates the process of drag \& drop using a locally saved picture.

Figure 1

Materials catalog and MATZ data

pCon.plannter 6 gives you access to an online catalog with MATZ surface textures. Click the pCon.catalog button in the Object group on the Insert tab or the "Materials" button in the Materials group to open this catalog.

When pCon.catalog is open, click "More Catalogs" on the right side of the home page and go to the catalog "World of Materials" which provides numerous materials such as woods,
fabrics, carpets, stone materials or metals from which you can make your choice.
Click your desired material to download it right into pCon.planner. The cursor is now a bucket icon to indicate the tool being active. You can now assign the chosen material to as many objects as you like by clicking the relevant surfaces. The mouse pointer

Figure 2 illustrates the selection of wooden floor coverings that can be assigned to the rectangle by mouse click.

Figure 2

Material Picker

The Material Picker allows you to pick any texture in your planning and drop it on another object. You find the Material Picker on the Edit tab in the Materials group. To enable this tool just click the icon.

Figure 3

Figure 4 shows two chairs with different materials. Select the Material Picker, click anywhere on the left chair and move the curser to the right chair. The curser is now a bucket. You can now assign the color to the right chair or any other object / part of an object by mouse click. Repeat this step as often as required.

Figure 4

Figure 5

Often objects consist of several parts. To dye the whole objects you need to drop the material on each part individually.
When you want to chose another texture, just click the Material picker icon again. To quit the dying operation click the right mouse button / press Esc. / select "Cancel" in the Context Menu.

Edit textures

Now that you have found a suitable texture - a picture or MATZ file - for an object, you can adjust it the shape of the object. For this purpose pon.planner provides the function "Edit Texture", which you can find in the Materials group on the Edit tab. With this function you can easily edit textures of 2D and 3D objects.

Textures for areas

A texture that refers to an area of an object can be adjusted in terms of its size, position, rotation and inclination.

Figure 3 shows a floor that was covered with a flagstone texture. To edit this or any other
texture just follow these steps:

1. Click "Edit Texture" (Edit tab, Materials group). You can see that the cursor changes its shape.
2. Click any point of the texture. The Pins that you need to adjust the texture (see figure 3) are displayed. Click the relevant pin, keep the left mouse button pressed and move the pin. (As soon as you move the pin you can let go of the left mouse button)
3. Another click refixes the pin.

Figure 6
Figure 3 illustrates the three different kinds of pins. With the Context Menu entry "Unique Pin Action" you can turn all pins into the shear / stretch pin. Then all three pins switch their shape to the green quadrangle and can now be used to adjust the texture on basis of the position of each pin.

Check out which of the two methods is more convenient for your work.
Figure 7 shows one possibility to assign a tiles texture to the room.

Figure 7

Reset Mapping

In Figure 3 you can see the actual texture framed in light blue. To cover the complete floor pCon. planner automatically "maps" it as many times as necessary.

This "repetition" can be suspended with the entry "Reset Mapping" in the Context Menu. The actual texture is then adjusted to the shape of the object.

Figure 8 illustrates the effect of the Context Menu entry "Reset Mapping" on the given example from figure 3.

Whether the entry "Reset Mapping" is useful or not depends on the shape of the object. Particularly when the automatic texture mapping does not have the ideal result, this option is very useful. After resetting the mapping you can modify the size, position, rotation, inclination of the texture as described in this chapter.

Figure 8

Modifying the texture

As you have already learned in this chapter, the three pins in figure 6 are used to modify the size, position, degree of rotation and the inclination of a texture.

Furthermore, these pins can be moved to select a certain part of the texture and to adjust it to the size of the object.

Figure 9 shows a wall paper that was assigned to a rectangle by drag \& drop.
We will now adjust the texture in such a way that the "dirty" edge disappears.

To select a certain part of a texture follow these steps:
1.Start the Edit Texture Tool (Edit.tab) and select the texture.
2. Click the relevant pins and let go of the mouse button. The pins are now detached from their prior position and can be moved.
3. Click again to fix the new position of the pin.

In Figure 10 the blue (move) and the red (rotate/scale) pin were moved. The green (shear/stretch) pin remains at its position because it is not needed for this operation.
4. Now click the red pin, keep the mouse button pressed and move to the right to scale the texture. (Once you have started to move the pin you can let go of the left mouse button)
5. Click again to fix the current position of the texture.
6. Now click the blue pin (move), keep the mouse button pressed and move the pin.
7. Click again to confirm this modification.

Figure 11 shows the result of all modifications. There are no "dirty" edges anymore.

Figure 9

Figure 10

Figure 11

Adjust textures to 3D objects

Along with two-dimensional objects you can of course use the pins to adjust textures to any three-dimensional object.

The procedure is quite similar. The difference is that the pins are always displayed at
planner6
the easiest accessible side of the object. This depends on the perspective.
The figures 12 and 13 illustrate the effect of a slight change of the perspective on the pins. Even a slight change in the perspective makes the pins switch to another side of the object.

Figure 12

Figure 13

Modifications that you perform using the pins effect all relevant sides at the same time (not just the one that displays the pins).
Figure 11 demonstrates the effect of a non-proportional scaling on the different sides of the cube. The pins are positioned like in figure 14.

Figure 14

Note

The option "Reset Mapping" is also applicable (Context Menu) when you edit textures of three-dimensional objects.

Mapping options

The mapping method is responsible for the way a texture is displayed on an object. In all standard cases the user does not need to worry about the mapping method. It is an automated process in pCon.planner.

But there are some cases when individual mapping can be useful. The following passages deal with the options of individual mapping.

Planar Mapping

Planar texture mapping is the easiest method. The selected texture is mapped onto an element from one direction. Examples are given in figures 6-11.
planner 6

Planar mapping is primarily used for two-dimensional objects. The entry "Planar Mapping" in the Context Menu allows you to apply planar mapping also to three-dimensional elements.
Figures 15 and 16 illustrate the characteristics of planar mapping from various directions.

Figure 15

The red arrows in the pictures indicate the mapping direction. In the left picture you can see the automatic mapping as it is performed by pCon.planner. In the right picture the projection plane was rotated by 90° to the object. The rotation was performed with the green pin (shear / stretch)

Cylinder Mapping

The cylinder mapping is used to adjust (calculate) textures to three-dimensional objects (figures 9-11).

Here the selected texture is not mapped onto the object from one but from different directions. The figures 17 and 18 demonstrate this difference.

Figure 17

Figure 18

Figure 17 visualizes the cylinder mapping, whereas figure 18 visualizes the planar mapping.

In the Context. Menu you find the two entries "Planar Mapping" and "Cylinder Mapping" which allow you to switch between both mapping options and to test their effect on the objects.
planner6

3.3.2.6 Edit properties

Click the Properties button in the Tools group on the Home tab to open the pCon. planner Properties dialog box.

This dialog box provides information on many object properties and also allows modifying these properties.

To modify object properties first select an element or a group of elements. Then open open the Properties dialog box.

Figure 1 displays the properties of a point light. In the dialog you can, for example, edit the position of the element, the color and the range of the light.

Properties		x
Layer	72_EGR_ROOM5_LIGHT	
> X-Position	7,3092m	
Y-Position	4,6568m	
Z-Position	0,0000m	
Color	255255255	"
Intensity	1,00	
Range	$30,0000 \mathrm{~m}$	
Light Source	On	V

Figure 1

3.4 Navigation in the planning

The navigation in pCon.panner includes four components, which - in combination - allow you to look at your planning from every perspective.
You can zoom in and out on your planning, or you can pan the view into all directions. The orbit mode allows to rotate around one set point and WASD navigation allows movements parallel to the planning level.

Contents

1. Zoom operations
2. Scroll wheel
3. Zoom menu items
4. PAN function
5. Orbit function
6. WASD navigation

3.4.1 Zoom operations

You can zoom in and out on your planning by using the scroll wheel of your mouse, with particular menu items as well as with keyboard shortcuts.

Scroll-wheel

Turn the scroll wheel to zoom in and out on the planning. Turn the wheel "away" from you to zoom in and "toward" you to zoom out.

Note that the zoom zooms to the current position of the mouse pointer. This allows you to focus on specific objects.

Note

If your mouse does not have a scroll wheel you can use the Zoom operations in the Camera group on the View tab or the respective keyboard shortcuts to zoom in and out on your planning.

Zoom menu items

The zoom menu items are located in the Camera group on the View tab. These Zoom tools not only allow to zoom in and out, but also to match the size of the planning to the current size of the work area.

To open the menu click the arrow below the zoom button.

Altogether the zoom menu contains six items (Figure $1)$, which will be introduced as follows.

¢	Zoom In	Ctrl++
\bigcirc	Zoom Out	Ctrl+-
Q	Zoom Rectangle	
©	Zoom Center	
50]	Zoom Extents	Ctrl+Space
5	Zoom All Extents	Shift+Ctrl+Space

Figure 1

- Click Zoom In to zoom in on the planning in the active viewport.
- Click Zoom Out to zoom out on the planning in the active viewport.
- Click Zoom Rectangle if you want to zoom to a specific area of your planning. In the relevant viewport click and drag the rectangle around this area. The selected area will be zoomed in.
- Zoom Center works similarly to the Zoom Rectangle tool, only that rather than a rectangle, this tool opens a square around the starting point.
- Zoom Extents shows the full extent of the active viewport.
- Similar to Zoom Extents, Zoom All Extents shows the full extent of all viewports simultaneously.

Note

1. Alternatively to the zoom menu items you can use the keyboard shortcuts as to be seen in figure 1. The "+" means that you have to press the keys simultaneously.
2. Zoom Rectangle and Zoom Center are not available in the perspective camera view

3.4.2 PAN mode

Figure 2

Panning allows you to move your view of the planning two-dimensionally. You can pan sideways or up and down while remaining at the same distance (see Figure 1).

Click and hold the right mouse button to activate the panning function and move the mouse pointer vertically or horizontally. The mouse pointer changes to a hand icon (encircled in Figure 1) which stands for the pan mode.

Figure 1 shows the directions of the panning navigation within an exemplary planning project.

3.4.3 Orbit mode

Figure 1

The orbit function swivels threedimensionally around one set point, which can be positioned on any object or in empty space.

1. To use the orbit mode, first change into the perspective camera position. Move the cursor to the position around which you want to swivel.
2. Click and hold the scroll wheel of your mouse. In the active viewport, the mouse pointer changes to indicate the orbit mode (encircled in Figure 1).
3. Move the mouse to swivel around the fixed point. You are in the orbit mode for as long as you hold the scroll wheel.

If your mouse does not have a scroll wheel nor a middle mouse button, follow these instructions:

1. Click the point around which you want to swivel.
2. Now click the left mouse button while keeping the right mouse button pressed.
3. Move the mouse to swivel around the current mouse position. You are in the Orbit mode for as long as you keep both mouse buttons pressed.
planner6

Note

The orbit function applies in the same manner if your mouse has a middle button instead of scroll wheel.

3.4.4 WASD navigation

Figure 1

With the arrows or with the "W", "A", "S", "D" keys on your keyboard you can move your planning forward, backward, right or left. This way of navigation carries out movements parallel to the base level (see Figure 1).

Unlike the orbit function, you do not determine the starting point for the rotation. The current camera position - your point of view - is always the point of reference for the WASD or arrow navigation. This function provides the most realistic navigation.

3.4.5 Walkthrough Interaction Mode

pCon.planner provides a fifth camera mode - the Walkthrough Interaction Mode.
You can switch to this mode via the Icon ${ }^{〔!}$ in the Status Bar at the bottom of the program or via the F9 key.
The Walkthrough Interaction Mode is only activated for the active view. We recommend to use this mode in the Perspective camera view.

3.5 Camera settings and rendering modes

This chapter introduces the different camera angles and rendering modes of the pCon. planner. A good understanding of the different options greatly helps to efficiently apply the software. All corresponding commands are located in the Camera group and Render group on the View tab.

Contents

1. Camera angles
1.2D camera positions
2. Isometric camera positions
3. Perspective camera position
4. Individual camera views
5. Assign camera positions
6. Rendering modes
7. Wireframe
8. Hidden Line
9. Colored
10. Shaded
11. Conceptual
12. Realistic
13. Extended rendering options
14. Adjust Rendering
15. Show outlines
16. Transparent walls

3.5.1 Camera angles

The different available options for camera positions are located in the Camera group on the View tab. You can assign the way you look at your planning to match your needs at every step of your planning progress. The currently active setting for each viewport is highlighted on the Ribbon as shown in Figure 1.
This chapter introduces the different camera angles and provides you with some useful hints on how to use them effectively. Furthermore you will learn how to assign individual settings to each viewport.

3.5.1.1 2D camera positions

The following tables with the pCon.planner icons in the left column and corresponding examples in the right column help you understand the specific settings.

The names of all camera positions except the perspective view derive from their spatial relation to the top view.

The use of the Top and Bottom camera positions is mainly suitable for the drawing of walls as well as for the insertion of room and furnishing items. They provide a good overview of the planning's layout and the distribution of items. You can also easily specify width and depth. The Bottom view is a rotation of the top view by $\mathbf{1 8 0} \mathbf{0}^{\circ}$ about the y-axis.

2D view		Example
		Rear

Left, Right, Front and Behind views are useful for working on the objects located along the relevant sides of the rooms, where you can easily change size and location of room and furnishing items. Particularly height and distance measurements are easily carried out in these perspectives.

3.5.1.2 Isometric camera positions

The following tables with the pCon.planner icons in the left column and corresponding examples in the right column help you understand the specific settings.

The names of all camera positions except the perspective view derive from their spatial relation to the top view.
Isometric view

Isometric view

Example
Isometric view

The isometric views visualize the planning three-dimensionally disregarding natural distortion. These views therefore appear clearly arranged and allow to easily edit room and furnishing items.

3.5.1.3 Perspective camera position

The Perspective setting displays the observed objects in a realistic manner. This is accomplished by including natural distortion. This provides you with a realistic impression of your planning.
Perspective view

3.5.1.4 Individual camera views

Along with the standard camera positions you can easily set up customized views and use them in the further planning process.

Here you will learn how to set up and adjust individual camera views.

Contents

1. Set up individual camera views
2. Option 1
3. Option 2
4. Display / hide camera symbols
5. Adjust individual camera views

Set up individual camera views

There are two options how to set up customized camera views (cameras):

Option 1

- Click the button for the perspective view (Camera group on the View tab) to switch the active viewport to the perspective view.
- Navigate the planning to the desired view.
- Click the down arrow on the Camera button (Camera group on the View tab) and select „Camera from view". An individual camera view of the current perspective is created.
- The blue circle that will immediately show up on your planning indicates the center of the new camera view - the camera focus (see figure 3).
- If you now want to change the camera focus, just click the circle and move it.

In the paragraph „Assign camera_positions" you will learn how to display the individual camera views in the active viewport.

Option 2

- Click the button for the perspective view in the Camera group on the View tab, to switch the active viewport to the perspective view.
- Click the Camera button (Camera group on the View tab).
- The cursor now changes its shape to a camera icon.
- Click the viewport to define the position of the camera. Alternatively you can enter exact measurements and confirm by Enter.
- Now define the direction of the camera and the angle of the shot. To do this move the mouse over the viewport and click the desired position. Alternatively you can enter exact measurements and confirm each entry by Enter.

Display / hide camera symbols

You can display or hide the symbols for your customized camera positions while working with you planning. Displaying the symbols is necessary if you want to make changes to one or several of your individual views.

To display or hide the camera symbols click the down arrow on the Camera button (Camera group on the View tab) and select "Show cameras" (figure 2).

Figure 2

The setting is active when it is highlighted. To deactivate it just click again.
Another possibility to display the camera symbols is via the layers and the layer control.

Adjust individual camera views

Your individual cameras can be adjusted with regard to their position and displayed detail. To perform adjustments first click one of the camera symbols. A four-sided pyramid with its vertical center line is displayed.
Figure 3 shows the origin of the camera, the camera focus and the displayed detail - marked with red lines.
planner 6

Figure 3

Rotate around origin and focus

To rotate individual cameras around the camera focus just click the position interactor and pan it (figure 4).

Another mouse click confirms the new camera position.

This change is particularly convenient when you want to look at an object from several perspectives.

Figure 4 illustrates (highlighted in light green) the positioning interactor, all possible directions as well as - marked by a red circle - the fixed camera focus.

Figure 4

Along with rotating the camera around the camera focus you can also use the interactor (see red
circle in figure 4) to rotate the camera itself.

Shift camera to another position

Along with rotating the camera around the camera focus and rotating the camera itself you can also shift the camera and its focus to another position.

To do this click the camera symbol. The lines as described in passage "Adjust customized camera positions" are displayed (figure 5).

Click one of the lines and move the mouse to shift the position of the camera and the camera focus.

Another click fixes the new position. Figure 5 illustrates the vertical and horizontal movement of

Figure 5 the camera.

Zoom in and out on display detail

The display detail focussed by a camera can be changed by positioning the camera closer or further away from the object.
Additionally, you can influence the size of the display detail by moving the position interactor.

To move the position interactor follow these steps:

1. Click the position interactor.
2. Move the interactor along the line of the camera focus. The closer you get to the focussed object the smaller the display detail. When you move away from the focussed object the display detail will get wider.
3. A final mouse click fixes the size of the focussed area.

3.5.1.5 Assign camera positions

There are 2 options to assign specific camera positions to a viewport.

Option 1

Figure 1

Option 2

Figure 2

In the upper left corner of each viewport the name of the camera perspective is displayed. In the active viewport this name is highlighted in red.

To assign the active viewport another camera position just click the highlighted word in the upper left corner and select the relevant entry. (Figure 1)

The menu displays the standard camera perspectives first. Below you find the individual perspectives.

Click anywhere in the viewport to which you want to assign a new camera perspective.

Click the arrow (figure 2, Camera group, View tab) to see all possible camera positions. The standard and individual views will be displayed. Select the appropriate view by mouse click. The planning is then displayed in the chosen view.

There you will find your customized camera perspectives listed below the standard positions. Click the desired position to assign it to the active viewport.

3.5.2 Rendering modes

Figure 1

In pCon.planner you can have your planning displayed indifferentrendering modes. You can choose the appropriate setting in the Render group on the View tab, which assigns the desired mode to the active viewport.
The active rendering mode of the viewport is highlighted in color as can be seen in Figure 1.

Click the links below to learn more about the characteristics of each rendering mode.

Contents

1. Wireframe mode
2. Hidden Line mode
3. Colored mode
4. Conceptual mode
5. Shaded mode
6. Realistic mode
7. Extended rendering options

3.5.2.1 Wireframe mode

Figure 1

This mode displays all objects of your planning aswireframe models. This means that only the construction lines of the elements are displayed. The amount of construction lines is different depending on the object.
One typical application of the wireframe mode is when 3D plannings are created by accurately tracing 2D data.

Figure 1 shows a stool in wireframe mode.

3.5.2.2 Hidden line mode

Figure 1

3.5.2.3 Colored mode

Figure 1

Similar to wireframe, the construction lines remain visible in the Hidden Line mode. However the surfaces between the edges are filled in white, concealing any lines behind the object. Only those lines facing the observer are displayed. Plannings in the Hidden Line mode therefore appear less complex than in the Wireframe mode.

Figure 1 shows a stool in the Hidden Line mode.

Additionally to the construction lines (as known from the Wireframe and the Hidden Line modes) the Colored mode shows colors and textures on the objects. But in order to keep the required system resources low there are no visual effects that would require intensive computer calculations, such as light and shades.

This mode was designed for two-dimensional floor space plans.

Figure 1 displays a stool in the Colored mode.

3.5.2.4 Conceptual mode

Figure 1

3.5.2.5 Shaded mode

The Conceptual mode improves the threedimensional perception of the objects by systematic application of cold and warm colors as well as the use of reflections.

With computers that support OpenGL 2.1 this mode usually provides the fastest processing speed and is suitable for every planning phase.

Figure 1 shows a stool in the Concept mode.

Figure 1

3.5.2.6 Realistic mode

Figure 1

In contrast to the Wireframe and Hidden Line modes, the lights that you placed in the planning are displayed and effective. The planning therefore appears more natural than in the modes mentioned above.

The illumination model that is used in this mode is very simple. The objects themselves are illuminated which promotes their spatiality. But complex calculations, such as the visualization of shades, are not included to ensure a high performance and speed of this render mode.

Figure 1 shows a stool in Shaded mode.

The highest rendering quality for textures and colors of room elements is provided by the Realistic mode. The shades of the objects in your planning are displayed and create the optimum of real-life appearance. The Realistic mode is primarily suitable for presentation and assessment of the planning in the end of the design process. For the planning itself we recommend other modes.

Figure 1 shows a stool in Realistic mode. More examples for realistic displays can be accessed in our Gallery.

3.5.2.7 Extended rendering options

Figure 1

Click the icon encircled in Figure 1 to access the extended rendering options. A dialog box opens, which offers a number of configuration options on three tabs: Presentation, Quality and Miscellaneous (Misc).

Presentation tab

Colors

- "ISO/2D Background": Set a background color for all two-dimensional views.
- "Show sky environment in perspective viewports": A sky is displayed in the perspective camera view in all rendering modes.
- "Perspective background": Set a background color for the perspective camera view.

Options

- "Point size": A point is very difficult to find in bigger drawings. To make this easier you can adjust the point size in pixels ($1 \mathrm{px}-50 \mathrm{px}$).
- "Use quick rendering": Activate this option if you want pCon.planner to switch automatically to a faster rendering modes. Especially with slow graphics cards this has a very positive effect on the visualization speed of your drawing. You can configure the switching via the Options button: If you require an earlier or later switching / returning to original rendering mode, just change the delay time (in ms). Depending on your graphics card the option "Use wireframe as lowest reduction level" can also speed up the navigation. Check this out!

Quality tab

Settings

- "Texture quality": With this option you can select a visualization quality of textures from "simple" to "Extra high". Please note that the texture quality may have an influence on the performance.
- "Shadow quality": With this option you can select the quality of the shadows from "Normal" to "High". Please note that the texture quality may have an influence on the performance.
- "Use anti-aliasing": With this option you can activate / deactivate the anti-aliasing of the objects. Objects appear more harmonic and smoother with the anti-aliasing activated.
- "Use global edge softening": With this option you can enable / disable the global edge softening. Edge softening reduces the number of displayed lines between the object surfaces. Please find detailed information in the chapter "Edge softening".

Miscellaneous tab

- "Synchronize center of orthographic views": Determine whether the center of the twodimensional views are to be synchronized. When this option is activated, navigation in the active viewport results in simultaneous navigation in all viewports.
- "Synchronize zoom of orthographic views": This option synchronizes the zoom in all twodimensional views. The zoom operations are carried out in all 2D-viewports simultaneously.

Note

The options for Synchronizing zoom or center directly affect the capacity of your graphics card. If you notice a loss in the processing speed in the rendering processes disable one or both of these options.

3.5.3 Adjust rendering

There are two ways to adjust the rendering of your drawing to your requirements. On the one hand you can have the outlines of your drawing displayed in the rendering_ modes " Conceptual", "Shaded" and "Realistic" via the function "Show outlines". On the other hand you can have walls displayed transparent via the function "Transparent walls".

Figure 1

The two functions are found in the menu that you can access via the small down arrow in the Render group on the View tab (encircled on figure 1).

Figure 2 illustrates a planning in the Realistic mode without transparent walls and without displayed outlines. In figure 3, on the contrary, you can see a combination of both functions.

Figure 2

Figure 3

Contents

1. Show outlines

2. Transparent walls

3.5.3.1 Show outlines

With the function "Show outlines" you can have the outlines of objects displayed also in the rendering modes "Conceptual", "Shaded" and "Realistic".

Figure 1

Navigate to the function by clicking the small down arrow next to the rendering icons (encircled on figure 1) in the Render group on the View tab.

Figure 2

Figure 3 shows a planning in the Realistic mode without outlines. Figure 4 shows the same planning but with the outlines displayed.

Figure 3

Figure 4

3.5.3.2 Transparent walls

With the function "Transparent Walls" you can have those walls displayed transparent that block your view inside a room or building. This will help you to keep a good overview of the current room situation and facilitate the planning process.

To get to the function "Transparent walls", click the small down arrow next to the rendering icons (encircled on figure 1) in the Render group on the View tab.

Figure 1

In the menu that is now open you can enable/ disable the function "Transparent walls" by mouse click. The tick confirms that the function is enabled.

Figure 2

Figure 3 shows a planning in the Realistic mode without outlines. Figure 4 shows the same planning but with transparent walls.

Figure 3

Figure 4

3.6 Aligning objects

The exact alignment of room and furniture items is of vital importance during the planning process. pCon.planner 6 offers you some useful functions that will help you to position the objects perfectly.

Contents

1. Coordinate systems and reference point
2. World Coordinate System
3. User Coordinate System
4. Reference point
5. Aligning objects with the User Coordinate System
6. Aligning objects in an unrotated coordinate system
7. Aligning objects in a rotated coordinate system
8. Activating and deactivating axes
9. Using axes in 2D views
10. Using axes in 3D views
11. Using axis snap
12. Axis snap in drawing, rotation, curving and extruding
13. Axis snap in moving and scaling
14. Lock axis
15. Disable axis snap
16. Using object snap
17. Configure snapping types
18. Selecting snapping types
19. Example snapping type "Line"

3.6.1 Coordinate systems and reference point

pCon.planner allows two-dimensional as well as three-dimensional planning, which consist of two or three coordinate axes respectively. The software provides a static, a priori defined standard coordinate system (world coordinate system - WCS) as well as the option of using a user coordinate system (UCS).

The difference between both coordinate systems is that the origin of the WCS is fixed in terms of position and orientation, whereas the UCS can be rotated and moved.
The coordinate systems help you position the objects. The UCS is particularly useful when accurately aligning objects in the desired spatial relation to one another.

World Coordinate System (WCS)

On every start of pCon.planner you work with the WCS by default. Its origin and orientation are static. The WCS gives you the basic orientation of the viewport and is important whenever you want to return from a rotated orientation to the default orientation (more information can be found below.)

The origin of the WCS is also referred to as the absolute zero in every drawing.

User Coordinate System (UCS)

In contrast to the WCS the origin of the UCS can be set anywhere in the drawing and its orientation can be changed. This gives you great flexibility for the alignment of the objects in your drawing. The chapter "Aligning_objects_using_____ User_Coordinate_ System" explains in detail how to use the UCS to align objects.

Reference Point

Figure 1

The origin of the WCS or the BCS is always determined by one and the same reference point.

Figure 1 displays a reference point to the left of the room (in the Top view).
On start of pCon.planner the reference point is always located at the zero point of the WCS.

It can be moved or rotated with the relevant entries in the Context Menu or by pressing the Spacebar on your keyboard.

Move Reference Point

Moving the reference point is always associated with moving the origin of the UCS.
To move the reference point just move the cursor to an arbitrary place in your drawing and press the Spacebar. Alternatively you can click "Move BCS" in the Context Menu.

Rotate Reference Point

Along with the possibility to move the BCS you can rotate it. Move the mouse to an object that is already positioned in the desired orientation, press "v" or press "Rotate BCS" in the Context Menu. The orientation of the BCS will align itself to the orientation of this object.

Reset Reference Point

You can reset the orientation as well as the origin of a BCS.
The Context Menu entry "Set WCS direction" turns a rotated coordinate system back to the standard orientation of the WCS. The origin of the BCS, however, remains unchanged.

Via the Context Menu entry "Set WCS origin" you move the origin of the BCS back to the standard origin of the WCS (zero point). The orientation of the BCS , however, remains unchanged.

3.6.2 Aligning objects using the User Coordinate System

The reference point determines, as described in the previous article (Coordinate systems and reference point), the zero point of the coordinate systems. Its orientation represents its rotation.

The two following articles describe how to align objects with the help of a reference point in a rotated as well as an unrotated coordinate system.

Aligning objects in an unrotated coordinate system

The first example visualizes the alignment of objects in an unrotated coordinate system by moving the reference point. The orientation of the unrotated coordinate system matches the orientation of the standard coordinate system.

Figures 1-7 demonstrate step-by-step the alignment of three bar stools in front of a bar.

Figure 1

- Figure 1 shows a bar with three randomly placed bar stools.
- The task is to arrange the bar stools evenly in front of the bar using a reference point. The bar stools are to be placed in equal distance to each other as well as to the bar.
- The reference_point is encircled (Figures 2-7).
- Figure 1 also shows the coordinate cross, which indicates the orientation of the user coordinate system.

Figure 1
plon.
planner 6

Figure 2

- The vertical alignment of all bar stools is demonstrated first.
- Move the mouse pointer - as shown in Figure 2 - to the front edge of the left bar stool (see tooltip) and press the spacebar on your keyboard.
- Alternatively click "Move UCS" in the Context Menu.
- This moves the reference_point to the location of the mouse pointer. The reference point now marks the new point of origin.

Figure 2

Figure 3

- Select the middle bar stool and then click the front edge of the stool in order to move it. The vertical distance to the reference point is displayed in the green box.
- Enter a zero ("0") to align the stool with the reference point (0 m) and as such with the left bar stool.
- Alternatively move the stool with the mouse and click to fix it when the bar stool is on the same level as the reference point.
- Repeat these steps to align the right-hand bar stool at the same distance to the bar.

Figure 4

- The bar stools are now all placed at the same distance from the bar. Next, they will be arranged in such a way that they are assembled evenly in front of the bar.
- Every bar stool has a length of 45.3 cm . The bar is 2.2 m long.
- The horizontal distances of the right and left stool to the ends of the bar are to be 10 cm . This adds up to a distance of 32.05 cm between the bar stools.

Figure 4

Figure 5

- Move the reference_point to the left-hand edge of the bar in accordance to Figure 5 (move mouse pointer to the edge and press the spacebar).
- Click the left stool on the left edge and drag the stool to activate the Move tool. Enter " 0.1 " and press Enter to place the stool 10 cm away from the vertical line through the reference point.
- Alternatively place the stool manually.

Figure 6

- Move the reference_point to the right-hand edge of the left bar stool.
- Then move the middle stool to make a 32.05 cm gap between the stools.
- To do this grab the middle stool on its left-hand edge and click again to start the Move tool. Enter "0.3205".
- Alternatively place the stool manually.
- Follow the same steps to align the right-hand stool in the same distance to the middle stool.

Figure 5

Figure 6

Figure 7

Aligning objects in a rotated coordinate system

Apart from aligning room and furnishing items in the standard coordinate system, you can rotate the coordinate system to better suit your needs. The following sequence of pictures (Figures $8-13$) shows how to do this.

Figure 8

- Figure 8 shows a table and a bench.
- In the unrotated coordinate system, the objects are parallel to one another.
- The task is to turn the two objects through 45° anticlockwise, then to center the bench in front of the table and to add another bench on the other side of the table, also centered in front of it.
- The reference points in Figures 9-13 are encircled.

Figure 9

- Select all objects.
- Double-click the selected elements to start the Rotate tool.
- Rotate the group of elements by 45° anticlockwise. The easiest way to do this is by entering the value after starting the tool. Alternatively you can do the Rotation manually.
- The rotation axes remain in their standard orientation, which you can standard orientation, which you can
easily see at the cross marking the reference point.

Figure 8 to start the Rotate tool.

Figure 9

Figure 10

- Table and bench are now rotated by 45°.
- For aligning the bench you first place the reference_point on the table edge facing the bench. Move the mouse pointer over the edge and either press the spacebar or select "Move UCS" in the Context Menu.
- The result of this step is seen in Figure 10.

Moved reference point

Figure 10

Figure 11

- In order to align the bench you need to rotate the user coordinate system.
- Leave the mouse pointer on the mid point of the table edge facing the bench and press the "v" key or select the Context Menu entry "Rotate UCS".
- The bench can be centered to the table e.g. by clicking one of the mid points of the long edges of the bench, starting the Move_tool and entering " 0 ".

Figure 12

- Click and hold the bench at the mid point of the upper long edge and start moving it toward the table at a 45° angle.
- The green axis appears to simplify your work.
- Enter a distance of approximately 30 cm between the edges of the table and bench.
- Alternatively you can manually move the bench.

plon.
planner 6

Figure 13

- Move the mouse pointer to the mid point of the upper table edge and move the reference_point by either pressing the Space bar or selecting the relevant entry in the Context Menu.
- Click the bench on the edge not facing the table and click again to start the Move tool.
- Move the bench toward the other side of the table and while moving press the Ctrl key to create of copy of the bench.
- Repeat the instructions above to align the second bench with the table.

Figure 13

3.6.3 Selecting and deselecting axes

The two or three interaction axes in the bottom-left corner of the work area can be individually switched on and off via mouse-click. The activation and deactivation of axes gives you more options for positioning room and furnishing items in your drawing.

When you move the mouse pointer over an axis, this axis is highlighted graphically to indicate which of the axes you are currently focusing on.
In Figure 1 the green axis is currently in focus. Click to deactivate (Figure 2).

Figure 1

Figure 2

Using axes in 2D Views

In all two-dimensional camera views (Top, Bottom, Left, Right, Front and Back) two interaction axes are available. You can turn one or both axes off to serve your needs.

- Figure 3 shows a combination of a table with two chairs in top view. The chair to

Figure 3 the right of the table is being horizontally moved closer to the table.

- To do this, the green axis was first turned off via mouse-click.
- Then the reference_point was placed on the mid point of the back of the chair, which allows to accurately assign the position of the chair before and after the moving process.
- As shown in the red box in Figure 3, the chair was moved towards the left by 42.5 cm .
- In the example described above, the chair was moved parallel to the active axis. The axis through the reference_point is displayed during the movement.

Using axes in 3D views

Designs in 3D are considerably more difficult than in 2D. This has to do with the fact that the mouse only conveys two dimensions.
For this reason you should always remember to use the axes target-oriented and to turn them on and off to best suit your specific needs at the time.

The sequence of pictures (Figures 4-7) demonstrates the utilization of axes in a 3D planning. The task is to rotate a bar stool through 180° and to place it seat-first on top of the bar.

Figure 4

- All following steps are carried out in perspective view.
- The three axes are currently activated.
- Other objects near the bar stool are hidden for simplification.

Figure 4

Figure 5

- The blue and red axes are deactivated.
- The stool is selected, so that it appears in red.
- A double-click on the bar stool activates the rotation function.
- The bar stool is rotated around the green axis through 180°.

Figure 5

Figure 6

- The green axis is deactivated
- The blue axis is activated.
- The camera angle is changed by approximately 90° so that you look at the bar stool from the right-hand side.
- The bar stool is lifted up along the blue axis until the seat is located slightly above the top of the bar.

Figure 6

Figure 7

- The blue axis is deactivated.
- The green axis is activated.
- The bar stool is moved toward the bar until the back of the stool nearly touches the edge of the bar.
- The bar stool is now placed up-side-down on top of the bar.

Figure 7

3.6.4 Using axis snap

The concept of axis snap enables you to align objects with axes directly related to starting points as well as reference points.

The snap axes are imaginary lines running horizontally and vertically through the said points. When - during an editing session - your mouse pointer crosses any of these axes it becomes visible and the object you are working on automatically snaps to it.
The following article is about axis snap in the context of drawing, rotation, extrusion and curving, as well as moving and scaling. Furthermore, the deactivation of axis snap and the locking of particular axes are discussed.

Axis snap in drawing, rotation, curving and extrusion

Below, axis snap is explained in a drawing situation. It applies identically to the rotation, extrusion and curving functions.

The reference point is important for axis snap. It is always placed at the start of drawing an object. It also represents the direction of the coordinate system which is displayed in the bottom-left corner of the viewport.
When, during a drawing process, the mouse pointer comes close to one of the snap axes, it becomes visible and the object currently being drawn snaps to it.

- Figure 1 shows a wall that is being drawn horizontally from left to right.

- To create a wall that is precisely horizontal, it is drawn close to the horizontal axis through the reference_point. The wall snaps to the axis and is therefore precisely aligned with it.

Figure 1

Axis snap in moving and scaling

The move and scale functions allow snapping not only to reference point axes, but additionally to axes related to starting points.

- The starting point is placed at the location where the editing was started. This point is highlighted in yellow as can be observed in Figure 2.
- In Figure 2 the width of a rectangle is downscaled. The original size of the object is marked by da
- shed lines.
- Through the movement of the mouse pointer along the axis through the starting point, the top edge of the rectangle snaps to the now visible horizontal snap axis.

Figure 2

Note

During the scaling process you can use the two vertical axes but also a diagonal scaling axis. Read more here.

Lock axis

Axis lock is a helpful function when the objects are to be moved, scaled or drawn along a particular snap axis. The example below (Figure 3) further explains the Axis lock function.

Figure 3

- Figure 3 shows the moving process of the chair on the right.
- Axis snap has made the horizontal axis visible.
- If you now choose the Context. Menu item "Lock axis" (alternatively press Shift), the axis is frozen. This means that vertical mouse movements do not cause object movement.
- This gives you better control over the horizontal moving process currently carried out.

Figure 3

- Press Shift or click "Unlock axis" in the Context Menu to deactivate the lock.

Disable axis snap

On occasion the axis snap function may not be helpful. In this case you have the option to turn it off.

To deactivate the axis snap move the mouse pointer over an axis during an editing session, leave it until the Context Menu appears and click "Disable Axis Snap". Alternatively you can press the " \mathbf{N} " key right after snapping to an axis.
Press " \mathbf{N} " again or click "Activate axis snap" in the Context Menu to re-activate the axis snap.

3.6.5 Using ojects snap

Figure 1

Object snap is another instrument for aligning objects. Similar to axis snap it provokes snapping to elements. Snap points and edges are important in this context.

Figure 1 shows an example for object snap:
The rectangle on the right has been moved toward the white rectangle. The movement wasinitiated in the middle of the right rectangle where the mouse pointer was located at the time.

When the mouse pointer came close to the right-hand side edge of the white rectangle it snapped to it. The relevant edge of the white rectangle now appears as a dashed line.

Object snap can be deactivated via the Context Menu ("Disable object snap") or via pressing the"H" key.

3.6.6 Configure snapping types

You can select the snapping type you want to use. This can be of advantage since the selection of some snapping types prevents the unintentional snapping to certain objects.

Selecting a snapping type

To select a snapping type just click the Magnet icon
 on the Status bar in the bottom right corner of the application.

Figure 2 shows all snapping types. The checked types are enabled, the unchecked are disabled. Click "(Select All") to enable / disable all snapping types.

Figure 3 illustrates all possible snapping types of a line that appear when moving the cursor over the grey line. The rectangles are the end points of the grey line, the circle marks the midpoint of the grey line and the triangle marks the intersection point of the red and the grey lines. The cross symbolizes that the snapping type "Line" is enabled.

Figure 3

Example: Snapping type "Line"

As to be seen in figure 4 the snapping type "Line" is enabled. The selected armchair was touched at its outer edge and moved towards the wall. When it comes close to the wall, the fixed point of the armchair snaps to it. The snapping line is displayed as a dotted line.

Figure 4

In Figure 5 the snapping type "Line" was disabled. You can now effortless move the armchair through the wall since it does not snap to the wall. This can be of advantage if you want to place a piece of furniture in a certain angle close to the wall without snapping to it.

3.7 Design and furnish rooms

This chapter is dedicated to the room and furnishing planning. In the following paragraphs you will learn how to create rooms, how to outfit them with windows, doors, floors, lighting and furnishing items and how you can assign materials to objects.

Contents

1. Walls
2. Drawing walls
3. Moving walls
4. Rotating walls
5. Scaling walls
6. Stretching and shortening walls
7. Curving walls
8. Extruding walls (adjusting the height)
9. Connecting, disconnecting and splitting walls
10. Grouping walls
11. Doors, windows and wall openings
12. Insertion process
13. Modifying position and size
14. Opening options for doors and windows
15. Round wall openings and niches
16. Floors
17. Objects
18. pCon.catalog client
19. 3D warehouse
20. Importing file formats
21. Inserting pictures
22. Inserting texts and annotations
23. Illumination
24. Spotlight
25. Directional light
26. Point light
27. Default illumination
28. Drawing elements
29. Creating drawing elements
30. Moving drawing elements
31. Rotating drawing elements
32. Scaling drawing elements
33. Extruding drawing elements
34. 2D symbols catalog

3.7.1 Walls

The following chapter contains all important functions you need for creating and editing the room element "wall".

Contents

1. Drawing walls
2. Moving walls
3. Rotating walls
4. Scaling walls
5. Stretching and shortening walls
6. Curving walls
7. Extruding walls (adjusting the height)
8. Connecting, disconnecting and splitting walls
9. Grouping walls

3.7.1.1 Drawing walls

The basis of each planning process is a room built of several walls. Along with the simple rectangular room, which you can draw by only two mouse clicks, pCon.planner offers you plenty of possibilities to create individual rooms.
The first two articles are a quick reference to create individual or simple rooms. The following sections explain details, such as defining angles, length and hight of walls, the axis snap or the use of wall starting points and wall end points.

Contents

1. Creating individual rooms
2. Creating rectangular rooms
3. Defining hight and depth
4. Defining angle and length
5. Moving wall starting point and wall end point
6. Using the axis snap
7. Properties dialog box

Creating individual rooms

Figure 1

With the Wall icon (encircled black in figure 1) on the Insert tab (Room group) you can draw single walls, that form rooms. Follow the steps below to draw a room.

1. Click the Wall icon on the Insert tab (Room group) to start the wall drawing tool.
2. Click the viewport to set the starting point of the wall.
3. Draw the walls by moving the mouse pointer into the desired direction.
4. Click or press Enter to fix the wall.
5. If you do not press "Esc" or click "Cancel" in the Context Menu, the drawing tool remains active and repositions automatically at the end of the recently drawn wall.
6. Now you can draw all walls as described in item 3 and 4 until the room is complete. You just need to position the starting point of the next walls right onto the end point of the previous one.

Figure 2 displays a room in the top view and illustrates the order in which the walls were drawn.

Figure 2

Drawing rectangular rooms

Figure 3
pCon.planner makes it very easy to draw simple rectangular rooms.
The Room menu (Insert tab) contains an entry for rectangular rooms that can be access by a click onto the arrow encircled black on figure 3.

To draw a rectangular room follow the steps below:

1. Specify the "height" and "depth" of the wall in the Room group on the Insert tab.
2. Select the entry "Rectangular room" in the Room group on the Insert tab.
3. Click the viewport to set the starting point of the room.
4. Move the cursor into the desired direction to draw the room. A final click finishes the room. Alternatively you can enter exact values for the length and the width of the room. For more information about how to use the keyboard to enter values click here.

Defining hight and depth

Before you start drawing walls you should assign their height and depth. Enter the specific values into the appropriate boxes next to the wall icon.

For more information on dealing with different wall heights in the same room go to chapter Extruding walls.

Figure 4

Defining angle and length

Figure 5

During the process of drawing walls (see " creating_individual rooms") you can change the length and the angle of a wall.

The starting point of a wall is at the same time the reference point. Depending on how long and at what angle you draw the wall (item 3 of the drawing process) it displays different values right next to the mouse pointer.

Figure 5 illustrates that the wall end point is $4,0147 \mathrm{~m}$ away from the reference point (length) and has an angle of $32,5647^{\circ}$.

You can either change the angle and length by moving the cursor or by keyboard entry. Clickenter to read more.

Notes

The reference for the angle is the horizontal axis. If the wall is drawn along this axis the angle is 0°.

Moving wall starting point and wall end point

Inside

During step 3 of the drawing process you can press the "Ctrl" key and/or "Alt" to shift the wall starting point (reference point) or the wall end point.

Figure 6 demonstrates with an example the use of this feature. The walls A and B are to be interconnected by a third wall (C). The inside dimension of wall $A(1,5 \mathrm{~m})$ and the outside dimension of wall B (2 m) are not to be changed. To do this the wall starting point and the wall end point of walls C are moved in the appropriate direction.

Figure 6

Note

Wall starting point and wall end point derive from the snap points as described in the chapter "Object Structures".

Using the axis snap

Figure 7

The concept of axis snap enables you to align objects with the help of snap axes that show up during the drawing process . These axes represent the orientation of the coordinate system.

When - during an editing session - the mouse pointer crosses the reference. point horizontally or vertically, the snap axes become visible.

Walls have additional snap axes between the snap points in the corners.

Figure 7 illustrates the process of drawing the third wall of a room. At the horizontal position of $5,3907 \mathrm{~m}$ the snap points of wall 1 and wall 3 are perfectly opposite each other and thus axis 1 is displayed.

Axis snap particularly facilitates the construction of rectangular rooms.

Properties dialog box

You can modify the hight and the depth of a wall that was already drawn in the

Properties dialog box. Just select the wall to be modified and then click the Properties button on the Home tab (Edit group). In the Properties dialog box you can enter the precise values.

3.7.1.2 Moving walls

Moving walls is fundamental for modifying the layout of a room. The pCon.planner therefore offers several options for moving walls. You can either use so-called object interactors or you can work with object surfaces, edges and snap points.

Contents

1. Moving walls without interactors
2. Option 1
3. Option 2
4. Moving walls with interactors
5. End interactors
6. Mid interactor

Moving walls without interactors

The moving of walls can be carried out with object surfaces, object edges and snap points. The following example demonstrates two options.

Option 1

1. Select a wall and then click either the surface, edge or one of the snap points.
2. Move the wall into the desired direction. Figure 1 shows how the mouse pointer changed into a cross indicating the moving operation. The displayed values express the vertical and horizontal distance between the reference point and the current mouse position.
3. Enter the relevant values and then press Enter to perform the move. The tab key allows to jump between the two values.

Figure 1

If you decide not to work with exact values click the desired position of the wall to move it to this location.

Option 2

The second option for moving walls is to use the Move tool in the Tool group on the Edit tab.

1. Select the wall, then click the Move tool (Edit tab, Tools group)
2. Move the mouse pointer into the viewport. You can see the mouse pointer change into a cross indicating the Move tool.
3. Click anywhere in the viewport. This activates the Move operation.
4. Move the mouse pointer to move the wall to the desired location. Alternatively you can enter exact the values.

Moving walls with interactors

Figure 2

The differences between moving walls with interactors to the methods described above are explained as follows.
Every selected wall features two endinteractors and one mid interactor, which are pointed out in Figure 2.

End interactors allow to change the length and angle of a wall while the opposite endinteractorremains fixed to its location.

The mid interactor allows you to grip and move a wall. When you move a wall via the mid-interactor, the adjacent walls are automatically adjusted. The room compound is therefore obtained.

End interactors

They allow you to modify the length and the angle of a walls by moving one of the ends while the other end remains at its position.

1. Select a wall via mouse-click and click one of the end interactors.
2. You can now change the angle of the wall as well as its length by simply moving your mouse sideways or up and down. The reference_point is automatically placed at the opposite end of the wall, the location of which remains unchanged (see Figure 3). All values displayed along the wall relate to the reference point.
3. Click the desired location or enter values to determine the new position of the wall.

Notes

In order to change the length of walls please also refer to the paragraph Stretching and shortening walls.

Mid interactor

When you move a wall via the mid interactor, the adjacent walls are automatically adjusted. The room compound is therefore obtained.

1. Select a wall at the mid interactor. Note that the reference_point is automatically placed at the same location.
2. You can move the wall up and down or sideways. In Figure 3, for example, the wall was moved to the left starting at the reference_point. Both adjacent walls were shortened accordingly. The room compound was obtained.
3. A final click finishes the movement. Alternatively you can enter exact values.

Figure 3

Notes

1. The Move tool cannot be applied in combination with interactors.
2. The activation of axis snap allows to easily move walls along a fixed axis.

3.7.1.3 Rotating walls

The pCon.planner allows to easily and quickly rotate walls. To do this the walls need to be selected. The rotation function will be explained in the following example. The top view will be used to take advantage of the good general overview provided by this camera perspective.

Starting the rotation

There are two options for starting the rotation function.

- Double-click the already selected wall.
- The Rotate tool is started at the location of the double-click.
or:
- Click the rotate tool on the Edit tab and click anywhere in the viewport. The Rotate tool is started at the location of the click.
- Make sure that the wall that you wish to rotate is selected beforehand.

Performing the rotation

After starting the rotation a yellow circle (Rotate tool symbol) appears in the viewport. The reference point is located in its center and a rotation axis points to the right to indicate a 0° rotation.

To carry out the rotation you first have to click the viewport again to determine the starting point of the rotation. Then the rotation of the wall begins. The rotation can be done manually or via entering a specific anlge. Figure 2 shows the previously horizontal wall from Figure 1 rotated by 45°.

Figure 1

Figure 2

3.7.1.4 Scaling walls

pCon. planner features a scale tool that allows you to to modify the size of single walls but also entire rooms. As already described in the chapter "Scale" you can perform the scaling process with scale interactors, scale distances and scale axes.

Scaling with interactors

1. First select the wall to be scaled.
2. Then click "Scale" in the Tools group on the Edit tab to start the scale tool. The wall now displays yellow dots (2D) or yellow balls (3D) - so-called scale interactors.
3. Click and hold one of the interactors and move the mouse to scale the wall up or down. Alternatively you can enter precise values and measurements to influence the size of the wall.
4. When the wall has reached the desired size click again or press Enter to confirm.

Scaling with distances

1. First select the wall to be scaled.
2. Then click "Scale" in the Tools group on the Edit tab to start the scale tool.
3. Click anywhere in the viewport to set the starting point for the up-scaling or downscaling of the element.
4. Move the mouse from the starting point into the desired direction and click again at the desired distance.
5. Now move the mouse over the viewport to start scaling the wall.
6. At the desired size click again to finish the scaling process.

Alternatively you can enter precise values and measurements during steps 4-6.

Using scale axes

Scaling axes help you scale walls proportionally or one-dimensionally.
The proportional (uniform) scale axis becomes visible as soon as the cursor is moved along the virtual line between starting point and end point.
Figure 1 illustrates the proportional scaling of a wall. The original size of the wall is displayed with a blue dashed line. The wall was scaled with the help of a scale distance.

The one-dimensional scale axes become visible whenever the cursor crosses a point in the coordinate system that forms a horizontal or vertical line with the start point of the scaling.
Figure 2 illustrates one-dimensional scaling of a wall along the vertical (green) scale axis.

Figure 1

Figure 2

3.7.1.5 Stretching and shortening walls

The length of walls can be changed via move operations as well as scaling. Another option changes the length through determining directional interactors (Figure 1) and entering values.

Follow the steps below:

- Select a single wall.
- Click the directional interactor (Figure 1) to determine the direction of the change in length.
- Click one of the length values (Figure 2) of the wall and enter a value. Of course you can also enter a factor, e.g. "*2".
- Press Enter to confirm.

Figure 1

Figure 2

Note

A change in length of one single wall using the method described above alters the proportions of the entire room.

3.7.1.6 Curving walls

Rooms are often not entirely perpendicular but instead are curved in some way or other. pCon.planner therefore provides options for curving walls to better allow your planning to be adjusted to reality.

Figures 1-4 and the associated explanations demonstrate the curving of walls.

Figure 1

- The curving function is carried out using curvature interactors.
- These become visible when a wall is selected.
- Every wall has two of these interactors.

Figure 1

Figure 2

- To curve a wall click one of the interactors and move the mouse pointer.
- The green box displays the distance between the mid point of the wall to the reference__ point (encircled in Figure 2).
- This value is called the height (H).

Figure 2

Figure 3
Figure 4

- The curvature of a wall is never definite. Changes can be carried out via curvature interactors, end-interactors or via height and radius.
- Figure 4 demonstrates the use of the right end interactor to modify the curvature.
- The value input field right next to the mouse pointer displays the distance and the angle to the reference point (encircled black).

Figure 4

3.7.1.7 Extruding walls (adjusting the height)

In the context of walls, extrusion refers to the modification of their height. The drawing process allocates an identical height to all walls. Through extrusion you can assign differing heights or even sloping walls.

Before you use the function you should choose a suitable camera view. Most of the time, the side perspectives such as Front, Behind, Left of Right will be the most suitable views.

Figures 1-3 demonstrate the extrusion function.

Figure 1

- Every wall has three Extrusion interactors (see Figure 1).
- The two end-interactors allow you to create slopes.
- The interactor in the middle allows you to change the overall height of the wall.

Figure 1

Figure 2

- Click the appropriate interactor to start the Extrude tool.
- Now you can adjust the height by moving the mouse pointer (Figure 2).
- You can also enter the associated height into the blue box.

Figure 2

Figure 3

- To create a sloping wall, just change the hight or the angle of ONE of the end interactors. Click the relevant values above the extrusion interactors and enter the numbers, then press Enter.
- On Figure 3 you can see a wall with a sloping ceiling. The height of the wall varies by 1 m along the entire length of the wall. At a wall length of 4.5 meters this adds up to a 12.5° angle.

Figure 3

Note

You can assign negative angles by entering a minus (-) in front of the number.

3.7.1.8 Connecting, disconnecting and splitting walls

The pCon. planner provides three special tools for assembling walls. They can be accessed via the wall icon in the Room group on the Insert tab. The three functions will be described as follows.

Connecting and disconnecting walls

Via the Connect function you can attach walls to one another. A typical application is when two single walls meet and are to be connected to each other (Figure 1). The connection function removes any gap between them.

Select the relevant walls and click "Connect". Figure 2 shows how the connection made both walls slightly longer.

The Disconnect function dissolves existing connections. Select the walls which are to be disconnected and click "Disconnect".

Note

The Connect function allows you to connect any number of walls. The only requirement is that they intersect.

Splitting walls

The Split function allows you to split walls to enable working on its pieces independently.

For splitting walls follow the instructions below:

- Select the wall which is to be split.
- Click the arrow below the wall icon (Room group, Insert tab) and click Split.
- The reference point is automatically placed at the mid point of the wall (encircled in Figure 3). This ensures that you can precisely halve the wall, although you can choose any point along the wall for splitting.
- Click at the desired location on the wall to set the splitting point or enter the exact value and press Enter.
- The wall has now been split. In Figure 4 you can see that the horizontal wall is now made up of two equal parts. Each part has a length of 1 m .

Figure 3

Figure 4

3.7.1.9 Grouping walls

Oftentimes it is more efficient to work on several walls of a room, or an entire room, at the same time rather than modifying each wall separately. In this context, pCon.planner provides you with the Group Objects function.

Follow the steps below:

- Click the relevant walls while pressing the Ctrl key to select all walls that you want to group.
- Click the Group tool in the Tools group on the Edit tab.
- The walls are now connected to a group. Editing functions such as moving or rotation now apply to the entire group.

Object groups can be dissolved via the "Ungroup" operation. Select the group and click "Ungroup" in the Tool group on the Edit tab.

3.7.2 Doors, windows and wall openings

This chapter deals with room elements that structure walls: doors, windows (double windows), glass panels (glass fronts) and wall openings. By means of a building section (Figures 1 and 2) we will explain how to insert such room elements, how to adjust their size and position, and how to assign specific opening properties.

Step by step the two adjacent rooms in figures 1 and 2 will be fitted with a number of room items which will then be adjusted according to given instructions. Figure 1 shows the intended purposes of both rooms (office and hallway).

Contents

1. Insertion process
2. Modifying position and size
3. Opening options for doors and windows

3.7.2.1 Insertion process

The building section at hand is to be fitted with several room elements. Four specific modifications are to be carried out:

- Insertion of a door into the wall between office and hallway.
- Insertion of three simple windows into the right exterior wall.
- Insertion of a glass panel into the left exterior wall.
- An opening between the hallway and the adjacent building at the bottom wall.

Note

Doors, windows and openings can only be inserted into existing walls. A position outside of walls is not possible.

We recommend you to insert room elements in the top view and the Wireframe_rendering mode. This gives you a good overview of the room and you can observe many object details.

There are three steps to the insertion process:

- Select a room element in the Room group on the Insert tab.
- Move the mouse pointer to a wall in the planning.
- Click anywhere on the wall to insert the object.

Step by step you can now insert any number of room elements following the method above. The result of this process can be seen two-dimensionally in Figure 1 and threedimensionally in Figure 2.

Figure 1

Figure 2

The insertion of several items of the same type can be achieved as follows:

Either:

- Press and hold the Shift key when clicking the room element in the selection on the Insert tab. Now insert as many items of this type (Step 3) as are needed. To finish the operation press Esc or click Cancel in the Context Menuto cancel the operation.

Or:

- After Step 3 press F2 to insert another identical element. Press F2 again to repeat inserting.

Note

Next to the entry "Glass panel" there is the entry "Glass front" which is a combination of several glass panels.
After selecting the room element "Glass front" you determine the starting and end point of it by mouse click. The distance between both points will be fitted automatically with the appropriate number of glass panels.

3.7.2.2 Modifying position and size

The height, width and position of room elements (doors, windows, glass panels or openings) can be changed, and that both manually and by entering values. The adjustment of size and position will be demonstrated in the given example.

Contents

1. Modifying the size
2. Manual modification
3. Entering values
4. Modifying the position
5. Manual modification
6. Entering values

Modifying the size

The size of doors, windows, glass panels and wall openings can be modified by entering values or manually via certain interactors.

Manual modification

The manual way of modifying the size of room elements is carried out via the interactors as to be seen in figures 1 and 2.
Click the relevant interactors for the height or width and drag them until the object has the desired size. Click again to finish the operation.

Figure 1

Figure 2

Note

Use the buttons "Hide selection" and "Hide others" on the Edit tab (Visibility group) to temporarily hide concealing objects.

Not all camera perspectives allow you to modify widths or heights. Left, Right, Front and Rear camera views only support height modifications, while Top and Bottom views only allow modifications of width. Depending on the perspective, three-dimensional views allow modifications of both.

Modifying the size by entering values

The other way of manipulating height and width of objects is to enter specific values. In Figure 3 you can see one detail of the example room rotated left by 90°. When you select a room element, quite a few numbers appear (see Figure 3). Each number indicates a specific dimension of the selected object (see legend). Always take good care as to what number to modify. Figure 3 shows different dimensions that appear after selection of a door.

Figure 3

Legend

1. Distance from outer edge of the door to the wall.
2. Width of the door.
3. Interactor: vertical opening properties.
4. Interactor: horizontal opening properties.

In order to modify the size, first choose a suitable camera perspective. Then click the relevant number and enter the desired value, then click Enter. In the example room, the
room elements are to be attributed with the following values:

- Door: height: 2.2 meters; width: 1.0 meters
- Window: height: 1.4 meters; width: 0.9 meters
- Glass panel: height: 2.5 meters; width: 4.5 meters
- Opening: height: 2.4 meters; width: 3.0 meters

The resulting sizes can be seen as two- and three-dimensional views in Figure 4 and 5.
Do not worry about the position of some of the room elements just yet. So far no specific instructions have been given. The next two paragraphs will continue with this.

Figure 4

Figure 5

Modifying the position

The position of room elements can be modified either manually or by value entry. The following two articles explain both options.

Manual modification

Doors, windows and wall openings can be moved manually by clicking and dragging them to a new position. Click on surfaces,_edges,_snap_points (Figure 6), or mid-interactors (Figure 7).

- Select an object.
- Click the surface, edge or mid-interactor of the object. This starts the Move mode.
- Move the mouse pointer to move the object.
- Click the desired position to finish the move operation.
plon.
planner 6

Figure 6

Figure 7

Note

1. Room elements are always bound to an existing wall. During a moving operation they can be moved across the room (except when you use the mid-interactor), but it snaps to the nearest wall as soon as you click to finish the moving operation.
2. During a moving operation you can deactivate axis and/or object snap via the Context Menu or keyboard shortcuts.
3. Figure 6 only shows a random selection of snap points for simplification.

Modifying the position by entering values

Room elements can be repositioned by entering specific values and measurements.
Figures 8 and 9 demonstrate which values you can change (in this case a window).

Figure 8

Figure 9

As you can see from the window example, the current distance to the floor is 0.8 meters (Figure 8). The distances to the left and right window are not identical (Figure 9). As already
mentioned in the paragraph on the change of size, the view of certain values and the possibility to change them is dependent on the camera angle.
In order to move objects, first select the desired element. Click the distance measure you want to change. Enter the value and press Enter. Of course you can also work with measurements and operators.

Next, the room elements in the example are to be positioned as follows:

- Door: distance to the floor: 0 m ; distance to the walls (left and right): 1.75 m
- Window: distance to the floor: 0.9 m ; distance to walls/windows: 0.45 m
- Glass panel: distance to floor: 0.05 m; distance to walls: 0 m
- Opening: distance to floor: 0 m ; distance to walls (left and right): 0 m

Figure 10

If you have repositioned all room elements in the example your room should look similar to the one in Figure 10.

3.7.2.3 Opening options for doors and windows

The way doors and windows open both vertically and horizontally can be determined via two interactors. These are highlighted in Figure 1.

Figure 1

These opening properties of a door or window can be easily changed. Simply click the
relevant interactor (double arrow). When the mouse pointer moves over an arrow, it is highlighted to indicate activation.

Figure 2

Next, the windows and doors in the example room are to be adjusted according to the following specifications:

- Door: vertically: from the hallway to the office; horizontally: door handle on the left when seen from the office
- Window: vertically: from outside to the hallway; horizontally: window handle on the right when seen from the hallway.

Figure 2 complies to these specifications..

3.7.2.4 Round wall openings and niches

The possibility to round off wall openings or turn an opening into a niche opens up a great range of new planning variations.

The basis of both is a standard opening in the wall. You find the room element "Opening" in the Room group on the Home tab and the Insert tab.

Contents

1. Properties dialog and selection of openings
2. Round openings
3. Niches
4. Combination of round opening and niche

Properties dialog and selection of openings

Figure 1 illustrates how you can select an opening in all rendering modes. In this example shows the Realistic mode. First select the wall that features the opening and then select the opening itself. Then click "Properties" in the Edit group on the Home tab.

Figure 1

Properties	
Layer	$72 _$EGR_INSERT
X-Position	$-3,4783 \mathrm{~m}$
Y-Position	$1,6464 \mathrm{~m}$
Z-Position	$-0,9510 \mathrm{~m}$
Arch Rise	$0,3000 \mathrm{~m}$
\# Center Offset	$0,0100 \mathrm{~m}$

Figure 2

Figure 2 shows the Properties dialog box for the opening of figure 1 . This dialog displays from top to bottom:

- the name of the layer the opening is assigned to,
- the position of the opening on the \mathbf{X}, \mathbf{Y} and \mathbf{Z} axis, which allow you to move the opening within the wall,
- the Arch Rise and the Center Offset, which are needed to round off the opening or to turn it into a niche.

Round openings

To round off an opening you just enter a value for the "Arch Rise" in the Properties dialog. The minimum value is $\mathbf{0 . 0 0 0} \mathbf{m}$ for a rectangular opening. The maximum value is half the width of the opening. In the case the arch of the opening is a semi circle.

Figure 3 illustrates a round opening with a width of 0.8000 m and an arch rise of 0.3000 m (half the width).
The arch can be modified at any time. You just need to enter another value or 0.000 to remove it completely.

Niches

Figure 4

To create a niche you need to enter a value for the "Center Offset" in the Properties dialog. If you enter $\mathbf{0 . 1 0 0} \mathbf{~ m}$, the wall behind the niche will be $\mathbf{0 . 1 0 0} \mathbf{m}$ deep. Theoretically the Center Offset cannot be bigger than the depth of the wall.

If you enter a positive value, the niche is on the inner side of the wall. Negative values produce a niche on the outside of the wall.

Figure 4 shows a niche with a Center Offset of 0.001 m .

The niche can be removed or modified at any time by entering another value or 0.000 m.

Combination of round opening and niche

Round openings and niches can of course be
 combined. A sensible variation of niches and openings with and without arch will make your drawing more interesting and allows you to design even rooms for example in the Mediterranean style.

Figure 5 illustrates the combination of the arch of figure 3 and the niche of figure 4.
You can now very easily place objects, e. g. shelves, vases, candles or accessories into a niche or opening (Figure 6).

Figure 5
planner 6

Figure 6

3.7.3 Floors

After completing a room you can add a floor. Click "Floor" in the Room group on the Insert tab. Then move the mouse pointer to the room you want to fit with a floor.

If the room is suitable for adding a floor, the room appears encircled by a red line (Figure 1). Click to insert the floor. Figure 2 shows what a finished room may look like.

Note

Floors can only be inserted into rooms that are surrounded by connected walls. Their height is not relevant for inserting floors.

3.7.4 Objects

In this chapter you learn how to insert objects of different file formats. The most important sources for objects are the pCon.catalog-Client and the 3D-Gallery.

Contents

1. pCon.catalog-Client
2. 3D Warehouse
3. Importing file formats
4. Inserting pictures
5. Inserting texts and annotations

3.7.4.1 pCon.catalog client

Via a click on the pCon.catalog button (Home_tab, Insert group or Insert_tab, Objects group) you open the pCon.catalog client.

The pCon.catalog client provides access to all available online catalogs and their room and furnishing objects which you can download - for example as DWG file - into your planning.

In the online catalogs that are accessible in pCon.catalog you will find:

- Furniture for private and work environments, such as tables, chairs, shelves, partition walls or shutters
- Materials that can be assigned to the surface of the objects, such as woods, plastics, stone materials, metals, fabrics or wallpapers
- Accessories for offices and private environments, such as mirrors, plants, flipcharts, books or dishes
- Illumination devices such as ceiling lamps, floor lamps or desk lamps
- Technical devices such as computers, hifi-equipment, TV sets or household appliances.

Contents

1. pCon.catalog homepage
2. Navigation
3. Application menu
4. Tab bar
5. Address bar
6. Bookmarks
7. Create bookmarks
8. Manage bookmarks
9. Import / export bookmarks
10. Use bookmarks
11. Settings dialog box
12. Content and privacy
13. Login manager
14. Downloading objects
15. Behaviour of the pCon.catalog window

pCon.catalog homepage

Click the Catalog button to open the Online-Catalog client. There you can search the appropriate objects via the search function. Furthermore, you find at the start page a list of the latest catalogs as well as selected products.

The top menu of the pCon.catalog window provides the following functions:

- "Catalogs": see all available catalogs and download products and materials to pCon. planner
- "About": detailed introduction of pCon.catalog
- "Try now": create an own free test catalog
- "Login": login to your test catalog

Services, such as Social Bookmarks (at the bottom of the window) allow you to easily share pCon.catalog with others.

Figure 1

Navigation

Figure 2 illustrates the different features of the navigation in the pCon.catalog client. Some elements will be explained in detail further down in the chapter.

Figure 2

Application menu

Figure 3

Via the Application menu of the pCon.catalog client you can adjust the program functions to your needs.

There you find:

- a link that opens the start page of the client.
- the possibility to create and close tabs to which you can assign certain contents (pages) and switch between them.
- the Bookmark Manager. This feature helps you save, organize and your individual bookmarks and to open a bookmarked page. Read more in article on bookmarks.
- the Print preview of the current catalog page and the possibility to print the current catalog page.
- the Settings dialog box. Here you can change the settings that concern the contents and privacy.

Tab bar

The tab bar (figure 4) allows you to open several pages of the catalog in parallel within the pCon.catalog window. Each page is loaded in a separate tab. If only one catalog page is loaded the tab bar is not visible. It you add a new tab via the menu entry "Add tab sheet" or Ctrl + T, the tab bar appears.

Via the tab bar you can add new tab sheets, close a tab sheet and activate selected tabs.

Figure 4

If you want to open a link from the address bar in a tab, click and hold the small icon (Fav-icon) right left to the address bar and drag the link onto a tab or onto an empty space on the tab bar (drag \& drop) to load the page there.
The same applies to the bookmarks in the Quick Access Toolbar. A click with the middle mouse button onto abookmark open it in a new tab.

Note

In the Content tab of the Settings dialog (figure 3) you can specify whether every catalog is opened in a new tab sheet and of the tab bar is always displayed (no matter if you use one or more tabs - figure 8)

Address bar

The Address bar is used to enter the URLs of the catalogs (figure 5).

Figure 5

The address history displays the catalog pages you have already visited (figure 6). The auto completion of you entry helps you to find pages that you have already visited again quickly. Click the small arrow right to the address bar to drop down the history.
http://pcon-catalog.com/sitag/lang/de/cHash/c172e6a970/
[] pCon.catalog-Home
http://portal.pcon-catalog.com/lang/en//
[3] Bruynzeel Storage Systems
http://pcon-catalog.com/bruynzeel-storage-systems/lang/nl/cHash/c172e6a970/
(USM Möbelbausysteme > Wohnen
http://pcon-catalog.com/usm/lang/de/folder/901/limit/25/cHash/af037f37e6/
(4) USM Möbelbausysteme
http://pcon-catalog.com/usm/lang/de/cHash/c172e6a970/
Figure 6

Bookmarks

Bookmarks are used to faster access pages that are often needed. You probably know the bookmarks concept from your Internet-Browser.

In the pCon.catalog client you can open the pages that you often use via bookmark.

Create bookmarks

If you want to create a bookmark of the current page, click the "Star" button in the upper right corner of the pCon.catalog client (Figure 2).

Insert a name for the bookmarked page and decide about its location. You can either position it in the Quick Access Toolbar (Figure 2) or in the "local bookmarks" folder.

Manage bookmarks

Figure 7

You have the following options:

- Delete: delete a selected bookmark
- Properties: modify the title and the address of the bookmark
- Add: add a bookmark, a folder or a parting line in the Bookmark Manager. A parting line improves the visual overview. With folders you can assign your bookmarks to individual categories. To shift a bookmark into a folder or before/after another bookmark left-click the bookmark and drag it to its new position.
- Import/Export: this feature is explained in the article below.

You can also use the Quick Access Toolbar to edit your bookmarks. Right-click the bookmark to open the Context Menu. This menu allows you to

- open the bookmark (in a new tab sheet)
- edit the properties of the bookmark
- delete the bookmark.

To shift the bookmark to another position just move the bookmark to its new position via drag \& drop.

Note

The two directories "Quick access toolbar" and "Local bookmarks" are main categories. Thus you cannot create new folders neither above them nor at the same level.

Import / export bookmarks

The Bookmark Manager allows you to export your bookmarks and to import them in a pCon.planner 6 on another system or in pCon.catalog in AutoCAD. Click "Import / Export" in the Bookmark Manager (Figure 7).

Use bookmarks

To access a bookmarked page open the Application Menu (Application menu / Bookmarks / Local bookmarks or Quick Access Toolbar) or use the Quick Access Toolbar (if the Toolbar is not displayed, click Application menu / Bookmarks / Show Quick Access Toolbar).

Then click onto the desired bookmark.

Settings dialog box

The Settings Dialog Box consists of two tabs: "Content" and "Privacy" as shown on figures 8 and 9.
planner 6

```
Content Privacy
```


Start Page

Clank Page
(0) pCon.catalog home page
© User-Defined:

Use Current Page

Tabbed Browsing
Open a new tab for each catalog
Always show the tab bar

Figure 8

Settings
Content Privacy
Login Manager
\checkmark Enable Login Manager
\square Auto-Submit Login Forms
Show Stored Information Clear

History
Keep my history for $\quad 14 \stackrel{\text { days }}{ }$

Clear

Cache

```
Clear
```


Content and Privacy

Click the Content tab of the Settings dialog box to make the following settings:

- define the start page of the pCon.catalog client,
- determine whether every catalog is to be opened in a new tab sheet
- determine whether the tab bar is to be displayed even when you are working with only one tab.

The Privacy tab allows you to change the settings of the Login Manager, the History Manager and the options to clear the cache. You can:

- save login data for a password protected catalog and determine whether you want to be logged in with these data automatically.
- clear the history of visited catalogs and define for how many days the history is to be kept.

The cache contains information on the objects you have already downloaded and is useful when you often load the same objects into your planning. The process of loading the objects is much faster.

Login-Manager

The pCon.catalog client gives you access not only to free but also to password protected catalogs. To open such a catalog you need to register with your user name and password. Only then you can use the objects of this catalog.
The pCon.catalog client offers a Login Manager that saves the user access data and provides them on demand during the login.

The Login Manager is enabled by default (Figure 9). Further to this option you can enable the entry "Automatic login" which makes it unnecessary for you to confirm your password and user name each time you open protected catalogs.

Downloading objects

The Online-Catalog client provides access to a great variety of online catalogs. They contain 2D and 3D objects provided by various manufacturers and dealers. The objects are available for free download (please see above).

The process of downloading and inserting objects into a planning is explained with the example from the previous chapter.

Step by step the rooms on figure 6 are to
 be equipped with the following items from the "World of Furniture" catalog:

- desk
- chair
- office cupboard
- floorlamp
- plant

Figure 10

To insert the items above carry out the following instructions:

- Click the Catalog button (Insert group on Home tab or Symbol group on Insert tab) to open the home page of the online catalog client.
- Click "World of Furniture".
- First click the "Office elements" folder, which contains subfolders with chairs and desks.
- Click the subfolder "Tables/linked tables" and choose a table for the office.
- Click the desired table to start the download.
- The object is now attached to your mouse pointer. Click at the desired position in the office to place the desk there.
- Click the Catalog button again to download more objects. Navigate to the relevant folders.

Figure 11 shows a room with all above mentioned objects. After you have inserted elements from the online catalogs, they can be edited and aligned. Figure 12 shows the rearranged furnishings in the example office.

Note

You may find a great variety of materials / textures for the object surfaces in the catalog "World of Materials".

Behaviour of the pCon.catalog window

After inserting an object from the pCon.catalog into your planning the pCon.catalog window pops up again.
If you don't wish that you can open the object settings in the Objects group on the Insert tab (encircled arrow on figure 13) and disable the option "Reopen catalog window after insert operation". The catalog window will now close after inserting an object.

3.7.4.2 3D Warehouse

Click the 3D Warehouse button on the Home tab or Insert tab to open a web application quite similar to a browser - that gives you access to the contents of the Google_3D Warehouse.
There you can search for objects and download them right into your planning in pCon. planner 6.
The data of the Google 3D Warehouse are primarily SKP files. These files can be downloaded from the versions 5-7 of the 3D Warehouse.

Figure 1

3.7.4.3 Importing object files

The Objects button in the Objects group (Insert tab) or the Import command in the Application Menu allow you to import a variety of different file formats into pCon. planner 6.

Contents

1. Possible file formats
2. Importing objects
3. Importing objects on invisible layers

Possible file formats

The following file formats can be imported in pCon. planner:

- DWG: pCon.planner 6 can read this format in all its versions and allows to write in the file versions R15-R17. We strongly recommend to safe DWG data in the latest version of the format.
- DXF: DXF is another format for planning data, along with DWG. pCon.planner 6 can read and write this format.
- SAT/SAB: ACIS SAT files are used in CAD systems such as SolidWorks, Solid Edge or Unigraphics/NX. You can load these data with pCon. planner.
- 3DS: 3DS is an older but still very widespread exchange format for 3D applications. It can very easily be inserted in pCon. planner 6 planning files.
- SKP: Via the 3D Warehouse button (Objects group, Insert tab) you can insert SKP files from the Google 3D Warehouse right into pCon. planner $\overline{6 . \text { Read more here. }}$
- FML: FML is a format for geometric object data. It has been made well-known by the predecessor versions of pCon. planner 6 and can easily be processed.
- ENV: ENV is just like FML a format by EasternGraphics. It comprises space planning data such as walls, windows, light sources and so on.
- OBK: OBK is the primary file format of the order tool pCon.basket. It comprises the FML format, which is loaded into your planning when importing OBK data.
- OGRP: An OFML group may contain single data as well as grouped object data. It is usually exported from pCon.planner 5 and pCon.configurator 5 and can be loaded in pCon. planner 6.

Further to the file formats described above you can import the picture formats JPG, BMP, TIF, GIF, PNG and TGA. Please go to chapter "Inserting pictures" to get more information.

Importing objects

To import one of these file types just follow these steps:

1. Click the Objects button in the Objects group on the Insert tab or the Import command in the Application Menu. The file dialog box opens.
2. In the dialog box select a file and click "Open". The file is now imported into pCon. planner 6.
3. If in the file you want to import the scaling unit is not defined, the dialog as to be seen on figure 1 pops up. Now you need to define the scaling unit yourself, before the geometry can be imported in pCon. planner.
The scale dialog helps you in the following ways: The upper part of the dialog displays the dimensions of the geometry, below you are recommended a scaling unit (in this example it is Inch). The dimensions that result from this scaling unit are given in the lower part of the dialog.
If you require another scaling unit just make your selection in the box. Furthermore, you can scale free-hand by entering a value for the "Width", "Height" and "Depth".

Figure 1

Importing objects on invisible layers

If you try to import an object that is located on an invisible layer (which you have hidden in a prior step) you will be shown an additional dialog during the importing process. The following example illustrates such a situation:

You have created room as to be seen on figure 2. The room is located on the layers 72_EGR_ROOM5_D2_WALL, 72_EGR_ROOM5_D3_WALL and 72_EGR_ROOM5_D3_FLOOR. Now you save the drawing as a DWG file.

Figure 2

Layer	
Layer Name	
0	Visible
72_EGR_BASE_PRIMITIVE	∇
72_EGR_INSERT	\square
72_EGR_ROOM5_D2_WALL	\square
72_EGR_ROOM5_D3_WALL	\square
72_EGR_ROOM5_LIGHT	\square
SKP_Layer0	\square
$\mathbf{4}$	\square

Figure 3

Now hide all layers that belong to the room (Figure 3). The room is no longer visible.
If you now import the room that you have previously saved via the Objects button (Insert tab, Objects group) or via the Import command in the Application_Menu, the dialog of figure 4 appears.

Click "Yes" to unhide the layers. The room is now imported.

If you click "No" the import is canceled.
After the import you can hide the layers again.

Figure 4

3.7.4.4 Inserting pictures

pCon.planner 6 allows you to import picture files of the formats JPG, BMP, TIF, GIF, PNG and TGA into your planning.
The following example explains the insertion process:

1. First switch to one of the isometric camera views or the perspective view. Then click the "Picture" button in the objects group of the Insert tab or in the Insert group of the Home tab.
2. In the dialog select a picture file and press "Open".
3. Click the viewport to set the origin of the picture. Move the mouse away from that point to open the picture(Figure 1).
4. Alternatively you can type in precise values in the fields right next to the mouse pointer.
5. The upper value is the offset value which indicates the current distance between the wall and the picture (Figure 1). You ought to define a minimum distance (e.g. 1 cm) to prevent the flickering effects that occur whenever two objects (e.g. a picture and the inside of a wall) are located on one and the same layer.
6. Click again to finish the insertion process or press Enter to confirm the values.

Figure 1

3.7.4.5 Inserting texts and annotations

pCon.planner 6 allows you to insert texts and annotations into your planning. The difference between both is that annotations display an arrow, whereas texts don't.

Both tools are shown in figure 1.

In the example we have entered

- the texts "Office 1, Sales, Anna Smith, Thomas Grey" and "Office 2, Assistant, Susan Burke"
as well as
- the annotations "Window", "Wall opening" and "Door".

Figure 1

Text

To insert texts follow these steps:

1. Click the Text button in the Objects group on the Insert tab. The text dialog opens.
2. Define the fond and the text height.
3. Enter a text. Press Enter to insert line breaks.
4. Click OK to finish.
5. The text is now attached to the cursor and can be placed anywhere in the planning by mouse click.

To edit a text just select it and click the Pencil icon next to the text. The text editor reopens and you can make the modifications. Alternatively you can press "Enter" or "Edit text" in the Context Menu (opens on right-click).

In order to position a text in the drawing just modify the values in the input fields right next to the cursor. The upper value determines the distance of the text to the closest object, e.g. a wall. To prevent flickering it is recommendable to always enter a small offset, e. g. 1 cm .

Note

1. Entering an offset value for texts is generally possible in all camera views. In 2 D views though, the values refer to the spatial relation of the texts to coordinate axes and not to another object.
2. Flickering effects may occur when two objects - e.g. a text and the inside of a wall - are on one and the same layer (figure 2).

Annotations

To insert annotations just follow these steps:

1. Click the Annotations Icon in the Drawing Elements group on the Insert tab. (The tooltip says: Insert a text box which refers, with the help of an arrow, to the desired point of the drawing). A text dialog opens.
2. Define the fond and the text height.
3. Enter a text. Press Enter to insert line breaks.
4. Click OK to finish text entry.
5. The annotation text is now attached to the cursor and can be placed anywhere in the planning by mouse click.
6. Then move the mouse to the object the text refers to and click there. The arrow is now displayed. The arrow can consists of several parts. The drawing process is then finished via the Context Menu entry "Finish" or the ESC key.

To edit a text just select it and click the Pencil icon next to the text. The text editor reopens and you can make the modifications. Alternatively you can press "Enter" or "Edit text" in the Context Menu (opens on right-click).
In order to position a text in the drawing just modify the values in the input fields right next to the cursor. The upper value determines the distance of the text to the closest object, e.g. a wall. To prevent flickering it is recommendable to always enter a small offset, e. g. 1 cm .

Note

1. The arrow of an annotation is always connected to the text of the annotation. That means that moving the text also moves the arrow.
2. Die Eingabe eines Abstandswertes bei Anmerkungen ist grundsätzlich in allen Kameraansichten möglich, jedoch beziehen sich die eingegebenen Werte bei 2DEinstellungen auf die Position der Koordinatenachsen und nicht auf ein anderes Objekt.

3.7.5 Illumination

Figure 1
pCon. planner provides you with different light sources for illuminating your room and furnishing elements. To insert light sources, or to display existing ones in the planning, click the down arrow next to the room elements on the Home tab or the Insert tab. In Figure 1 this $\overline{\text { arrow }} \overline{\text { is encircled. }}$

You can choose between spotlight, point light and directional light.

Contents

1. Spotlight
2. Directional light
3. Point light
4. Default illumination

3.7.5.1 Spotlight

Spot light projects a cone of light onto your planning. This cone of light can be configured in regard to the angle of beam, the range, color, direction, intensity and shadow.

The application and properties of spot light will be discussed as follows.

Application of spotlight

The application of spot light is versatile. You can illuminate entire designs, but you can also simulate the light of a single floor or desk lamp.

Figures 1 and 2 show different options for applying spotlight.

Figure 1

Figure 2

To insert spot lights follow these instructions:

Figure 3

1. Click the down arrow next to the room items on the Home tab or the Insert tab. (see here)
2. In the lighting category click "Spot light". Click inside the viewport to position the source of the spot light.
3. Now move the mouse pointer to determine the target that you want to illuminate and fix it by a mouse click. The point that you click is the center of the light circle projected by the spotlight.

Spotlight properties

Spot light features some properties which you can edit with the mouse and/or in the Properties dialog box.

Position

To change the position of a directional light use one of the three options describes below:

Option 1:

The position of the spotlight can be changed by the entry of the coordinates for \mathbf{x}, \mathbf{y} and \mathbf{z} (red, green and blue axis) in the Properties dialog box. These coordinates refer to the source of the light (Figure 3).

Option 2:

Another possibility to modify the position of the spotlight is to move the ledger lines. They run from the source of the light to the light circle and visualize the cone of light (please see dihedral angle). When you move the cursor over the lines they are displayed in light green . Now you can select a line and move it. Another click fixes the new position of the light.

Figure 4 displays the spot light with its ledger lines in a lateral view, figure 5 in the top view.

Figure 4

Figure 5

Option 3:

The third option is to move the light symbol (Figure 4). Click the symbol, move it to its new position and click again to fix it.

Direction

Every spot light radiates into a certain direction. When you select a spotlight with your mouse, the middle ledger line indicates the direction (see Figure 4). Two interactors allow you to change the direction.

- The first interactor is the source interactor. It is located at the source of the light and is highlighted in light green on figure 6.
- The other interactor is the target interactor which is located at the end of the middle ledger line (highlighted in light green on figure 7).

Figure 6

Figure 7

To change the direction of the spotlight follow the steps below:

1. Move the mouse pointer onto one of the interactors. The interactor will change to light

green.

2. Click and move the interactor.
3. Click again to confirm the new direction of the light.

Dihedral angle

The dihedral angle specifies the size of the cone of light. It can range from $\mathbf{1}^{\circ}$ to $\mathbf{1 7 0}^{\circ}$. You can set the angle either in the or you can use the light circle described above.

Figure 8

1. Move the mouse over the light circle (Figure 8). The circle will be displayed in light green.
2. Now click the circle and move the mouse to modify its diameter.
3. Click again to confirm the new dihedral angle.

Range and intensity

The range specifies the distance which the beam illuminates. It is specified in meters and can be changed in the Properties dialog box.

The intensity of the cone of light directly depends on the range. The intensity at the source of the spotlight can be specified in the Properties dialog. box and ranges from $\mathbf{0}$ (no light) to 1 (full intensity). It is highest right at the light source and decreases with growing distance. At the end of the distance it is 0 .

Figure 9

Note

As you can see in figure 9 the range and the length of the ledger lines are not related to each other.

Color

The color of the spot light can be determined in the Properties dialog box. The default color is white.

Shadow

pCon.planner can calculate shadows. To apply shadows, "Shadow" has to be checked in the Properties dialog box.
Shadow is only displayed in the perspective camera view. The other views do not support shadows.

Note

The shadows of manually applied spotlights are disabled by default. Check "Shadows" in the properties dialog box to display the shadows.

Switch spotlight on and off

The spotlights can be switched on and off via the Properties dialog box, as well. Check the entry "Light Source" to switch it on and uncheck it to switch the spotlight off.

Display / hide spotlight elements

You can display or hide the spotlight symbol. Simply click the arrow next to the Layer symbol on the Edit group (Home tab) to open the Layer control dialog. Then check / uncheck "Show lighting". All light symbols (not only the spotlight) will be displayed / hidden.

Whether you show or hide the lighting symbol has NO effect on the illumination of your planning.

3.7.5.2 Directional light

A directional light source projects parallel light beams onto your planning. It can be configured in direction, intensity, shadow and color.

The application of directional light and its properties are discussed as follows.

Application of directional light

Directional light applies consistent light to the entire planning. The parallel character of the light makes it very similar to sunlight.

Figures 1 and 2 show two examples of how directional light was used for illumination.

Figure 1

Figure 2

In order to apply directional light to your planning follow the steps below:

Figure 3

Directional light properties

Directional light features some properties which you can edit with the mouse and/or in the Properties dialog box.

Position

Option 1:

The position of the directional light can be changed by the entry of the coordinates for \mathbf{x}, \mathbf{y} and \mathbf{z} (red, green and blue axis) in the Properties dialog box. These coordinates refer to the source of the light (Figure 3).

Option 2:
Another possibility to modify the position of the directional light is to move the ledger line.

Directional light has one ledger line that runs connects the source and the target of the directional light. When you move the cursor over the line it is displayed in light green. Now you can select the line and move it. Another click fixes the new position of the light.
Figure 3 displays the directional light with its ledger line.

Option 3:

The third option is to move the light symbol (Figure 4). Click the symbol, move it to its new position and click again to fix it.

Direction

The directional light features two interactors that are used to change the direction of the beam of light.

- The first interactor is the source interactor. It is located at the source of the light and is highlighted in light green on figure 6.
- The other interactor is the target interactor which is located at the end of the middle ledger line (highlighted in light green on figure 7).

Figure 4

Figure 5

To change the direction of the directional light follow the steps below:

1. Move the mouse pointer onto one of the interactors. The interactor will change to light green.
2. Click and move the interactor.
3. Click again when the arrow points into the desired direction.

Since the directional light is quite similar to sunlight, it does not only radiate from its source but it emits parallel beams of light.

In contrast to spotlight and point light, the light source does not actually emit the light; therefore it is not dark behind it. The light source simply indicates the direction of the light beams. This specific characteristic is visualized in Figure 6.

Figure 6

Intensity

The intensity specifies the brightness of the incoming light. In contrast to spotlight or point light, the intensity of directional light is identical everywhere in the planning. It is not related to the distance from the light source.
The intensity at the source of the directional light can be specified in the Properties dialog box and ranges from $\mathbf{0}$ (no light) to 1 (highest intensity).

Color

The color of the directional light can be determined in the Properties dialog box. The default color is white.

Shadow

pCon.planner can calculate shading. To apply shading, "Shadow" has to be checked in the Properties dialog box.

Shadow is only displayed in the perspective camera view. The other views do not support shadows.
planner 6

Note

The shadows of manually applied spotlights are disabled by default. Check "Shadows" in the properties dialog box to display the shadows.

Switch directional light on an off

All illumination used in your planning can be switched on and off via the Properties dialog box. Check the entry "Light Source" to switch all light sources on and uncheck to switch them off.

Display / hide directional light elements

You can display or hide the directional light symbols. Simply click the arrow next to the Layer symbol on the Edit group (Home tab) to open the Layer control dialog. Then check / uncheck "Show lighting". All light symbols (not only the Spotlight) will be displayed / hidden.

Whether you show or hide the lighting symbol has NO effect on the illumination of your planning.

3.7.5.3 Point light

The point light emits light in a 360° angle from the light source into all directions (see Figure 3). It can be modified in color, intensity and range.
The application of point light and its properties are discussed as follows.

Application of point light

The application of point light is primarily used to light up specific objects. Figures 1 and 2 show two examples how point light was applied to achieve just that.

Figure 1

To apply point light sources to your planning follow the steps below:

1. Click the down arrow next to the room items on the Home tab or the Insert tab (see here).
2. In the lighting category click "Point light".
3. Click inside the viewport to position the light source.

Point light properties

The point light properties can be modified in the Properties dialog box or with the mouse.

Position

Option 1:

The position of the directional light can be changed by the entry of the coordinates for \mathbf{x}, \mathbf{y} and \mathbf{z} (red, green and blue axis) in the Properties dialog box. These coordinates refer to the source of the light (Figure 3).

Option 2:

Another option is to move the point light symbol. Click the symbol, move it to its new position and click again to fix it.

Intensity and range

The range specifies the distance to which the light source shines. The range is specified in meters and applies to all directions equally.

The intensity specifies the brightness of the light source. It can be modified in the the Properties dialog box and ranges from 0 (no light) to 1 (full intensity). The intensity decreases linearly with growing distance until it reaches zero out of the previously set range.

Figure 3

Color

The color of the point light can be determined in the Properties dialog box. The default color is white.

Switch point light on and off

All illumination used in your planning can be switched on and off via the Properties dialog box. Check the entry "Light Source" to switch all light sources on and uncheck to switch them off.

Show / hide point light elements

You can display or hide the point light symbols. Simply click the arrow next to the Layer symbol on the Edit group (Home_tab) to open the Layer control dialog. Then check / uncheck "Show lighting". All light symbols (not only the Spotlight) will be displayed / hidden.

Whether you show or hide the lighting symbol has NO effect on the illumination of your planning.

3.7.5.4 Default lighting

Whenever you load a drawing pCon.planner applies the default sources of light. These aim at guaranteeing a basic illumination of your drawing. The default lighting consists of three directional lights from the directions \mathbf{X}, \mathbf{Y} and \mathbf{Z}.

The shadows of the lights are disabled by default. Via the Properties dialog box you can activate the shadows of each of the three lights individually.

If you have deleted the default illumination by accident, you can reapply it via the entry "Default lighting" in the Room group on the Insert tab (figure 1).

Wall Elements			-
Door Glass Panel	Window Glass Front	Double Window Opening	
Lighting			
Default Lighting	Spot Light	Directional Light	
Point Light			
Additionals			
Rectangle Room	Floor		\checkmark

Figure 1

3.7.6 Drawing elements

Drawing Elements
Figure 1

The Drawing elements group on the Insert tab provides a number symbols, which you can insert into your project. This chapter shows you how to create and edit such objects.

Contents

1. Creating drawing elements
2. Moving drawing elements
3. Rotating drawing elements
4. Scaling drawing elements
5. Extruding drawing elements
6. 2D symbols catalog

3.7.6.1 Creating drawing elements

The pCon.planner allows you to create two- and three-dimensional drawing elements in your planning. Since the creation of the individual drawing elements is very similar we will only explain how to create a rectangle. Information on special elements are given at the end of this chapter.

Contents

1. Creating drawing elements
2. Offset value
3. Color
4. Information on further drawing elements
5. Polygon
6. Line/Polyline
7. Measurements

Creating drawing elements

To create a rectangle do the following:

1. Click "Rectangle" in the Drawing elements group on the Insert tab.
2. Click the viewport to start drawing. Alternatively you can enter exact values with your keyboard to set the origin of the object. Confirm each entry with Enter.
3. Move the mouse pointer to resize the rectangle, starting from its origin and click to complete the rectangle.
4. Or: Enter the size with your keyboard and press Enter.

Offset value

Some drawing elements display a third value - the offset - during the drawing process. This value allows you to position the drawing element by minimum distance above another object. Thus flickering effects are prevented that would occur when two objects are located on one and the same layer.

Figure 1

Color

Bild 2

Before you start to create a drawing element you can determine its color and apply a filling.

To do this click the arrow (encircled on figure 2) in the Drawing Elements group (Insert tab) and select the appropriate entries in the dialog box.

Note

You can change the fill color of drawing elements at any later time. Please click here for more information.

Information on further drawing elements

Polygon

To draw a polygon just draw all necessary lines after another. When you finished the polygon press Enter or click "Finish" in the context menu.

Line/Polyline

Similarly to the polygon you can press Esc or select "Finish" in the context menu to complete a polyline.

Measurements

To complete the entry of measurements press Esc or select "Cancel" in the context menu.

3.7.6.2 Moving drawing elements

Use the Move tool for repositioning drawing elements 2D and 3D objects in the planning.
To move objects do the following:

1. Select the relevant element. Click again either edge_or_surface of the element to activate the move mode.
2. Move the mouse pointer to reposition the object
3. Click at the desired location to complete the moving.

Note

1. For more information on moving objects please refer to chapter Functions and tools / Move.
2. Alternatively to manual moving enter specific values.

3.7.6.3 Rotating drawing elements

Use the Rotate tool for rotating 2D and 3D objects in the planning.

To move objects do the following:

1. Double-click the relevant element to start the Rotate tool.
2. Click again to set the starting point of the rotation.
3. At this point you start with the rotation of the object.
4. Next to the mouse pointer the current rotation angle in degrees is given.
5. Click to complete the rotation.

Note

1. For more information on rotating objects please refer to chapter Functions and tools / Rotate.
2. Alternatively to manual rotating enter specific values.

3.7.6.4 Scaling drawing elements

Use the Scale tool for scaling drawing elements in the planning.

To scale objects do the following:

1. Select the object you want to scale.
2. Click the Scale tool in the Tool group on the Edit tab.
3. Click one of the interactors and move the mouse pointer to scale the object.
4. Click to complete the scaling.

Note

1. For more information on scaling objects please refer to chapter Functions and tools / Scale.
2. Alternatively to manual scaling enter specific values.

3.7.6.5 Extruding drawing elements

Rectangles, circles, ellipses, polygons and polylines (interconnected lines) can be extruded to three-dimensional objects.
To extrude objects do the following:

1. Select the two-dimensional object you want to extrude.
2. Click the Extrude tool in the Tool group on the Edit tab.
3. Click the edge or surface of the two-dimensional element to start the extrusion.
4. Move the mouse pointer to extrude the element.
5. Click to complete the extrusion. The tool remains active so that you can continue extruding another element.

Note

1. For more information on extruding objects please refer to chapter Functions and tools under Extrude.
2. Alternatively to manual extruding enter specific values.

3.7.6.6 2D symbols catalog

The 2D symbols catalog is a web catalog. It contains various symbols, such as borders for drawing, title blocks, office furniture but also pictographs. The catalog is constantly being extended.

All objects are available as two-dimensional plannings and greatly extend your possibilities when designing a room. You can access the 2D catalog either in any browser or via the pCon.catalog website or via the pCon.planner according the instructions given below.

Figure 1

Figure 2

At the bottom of this menu you find the menu item "More shapes...". When you click this item, the 2D symbols catalog opens in the pCon.catalog window.

Figure 3 shows the interface of the 2D Symbols Catalog. Open the appropriate folder and select an element for your drawing.
(4) pCon.catalog - Home 符 World of materials

Figure 3

Figure 4 shows a title block and a border for drawing in combination with other drawing elements as an example.

Figure 4

3.8 Presenting the planning

pCon.planner features a Presentation mode for highly professional and impressive presentations of your plannings to your customers and business partners. It works in the Full Screen mode. Your possibilities of interaction are restricted to navigation and changing the quality of visualization and the camera perspective. Thus you cannot accidentally move items or make any changes to your planning during the presentation.

Furthermore, the pCon.planner provides a tool to create animations of your drawings. The animation can then be exported as a sequence of pictures and converted into a video with common video editing software, e.g. Windows Movie Maker, Virtual Dub or Quick Time.

The following chapters explain how to use the presentation mode and the animation tool.

Contents

1. Presentation
2. Animation

3.8.1 Presentation

Contents

1. Starting and quitting the presentation
2. Navigating in the Presentation Mode
3. Rendering modes
4. Camera perspectives

Starting and quitting the Presentation mode

There are three options for starting the Presentation mode:

- Press "F12".
- Click the Presentation icon in the status bar.
- Click the Presentation button on the View tab.

There are also tree options for quitting the Presentation mode:

- Press "Esc".
- Press "F12".
- Click "X" in the upper right corner.

Navigating in the Presentation Mode

In the Presentation mode you can use the following options for navigation:

- Walkthrough Interaction Mode
- Zooming via scroll wheel or the following keyboard shortcuts:
- "Strg" + "+" (zoom in),
- "Strg" + "-" (zoom out),
- "Strg" + "Space" (show the full extent of the active viewport)
- WASD navigation
- Up and down movement in the Perspective camera view:
- "R": moving up
- "L": moving down
- Orbit mode
- Pan mode

Rendering modes

You can switch between the different rendering_modes using the following keyboard shortcuts:

- "Shift" + "F1": Wire frame mode
- "Shift" + "F2": Hidden line mode
- "Shift" + "F3": Colored mode
- "Shift" + "F4": Conceptual mode
- "Shift" + "F5": Shaded mode
- "Shift" + "F6": Realistic mode

Camera perspectives

After starting the Presentation mode the planning is displayed in the camera perspective that was previously active. Of course you can use any other camera perspective, as well. Just click the red camera view in the upper left corner and select the desired view. Alternatively you can use the following keyboard shortcuts to change the camera perspective:

- "Ctrl + Shift + F1": Perspective
- "Ctrl + Shift + F2": Front
- "Ctrl + Shift + F3": Top
- "Ctrl + Shift + F4": Left
- "Ctrl + Shift + F5": Right
- "Ctrl + Shift + F6": Rear
- "Ctrl + Shift + F7": Bottom
- "Ctrl + Shift + F8": North East
- "Ctrl + Shift + F9": North West
- "Ctrl + Shift + F10": South East
- "Ctrl + Shift + F11": South West

3.8.2 Animation

pCon.planner features a tool to create and record animations which is explained in the following chapter.

Inhaltsübersicht

1. Create and play an animation
2. Animation along a path
3. Record the animation

Create and play an animation

In order to create an animation click "Edit" in the Animation Group on the Presentation tab.

Figure 1

Now the Animation Editor opens (Figure 2). This editor allows you to create individual animations. You can set individual camera positions or select existing cameras to apply them to the animation. Furthermore, the editor offers various options for the type and sequence of the animation.
planner 6

Figure 2

The editor is divided into three parts.

- On the left side you find the settings and functions that are needed to create an animation.
- On the right side you can set individual camera positions for the animation and make the settings for each position.
- In the lower part you find two buttons: With the "Play" button you can start the animation. After starting it this button converts into the Pause button which can be used to interrupt the animation. The "Stop" button stops playing the animation.

Figure 3

Alternatively you can use the "Play" button in the Animation group on the Presentation_tab (Figure 1). Then the Animation player opens (figure 3) and you can use the buttons "Play", "Pause" and "Stop".

Animation
Animation 2
Properties
Interpolation \quad Smooth
Anion Close Path Duration Path Length $0,00 \mathrm{~s}$ $0,0000 \mathrm{~m}$

Figure 4

To create a new animation click the green $\boldsymbol{+}$ in the Animation editor. An animation with the name "Animation 1" is generated. If this name is already occupied the animation will get the next number in numerical order (Animation 2).

Now you can modify the name. The text is selected automatically and you can enter a new name. Press Enter to confirm your entry. If you should like to change the name later you just need to select the animation and press Enter. Now you can edit the name.

With a click on the red - you can delete a selected animation. Alternatively you can press Enter after selection. Please bear in mind that deleting the animation cannot be undone!

With the symbols "Create animation along path" and λ_{k}^{\downarrow} "Create animation along path around target point" you can define a camera path (for example with drawing elements) along which the camera moves around an object. Read more under " Animation along a path" later in this chapter.
Furthermore, you can edit the properties of an animation. Check "Close Path" if you want to close the camera path. In this case the camera moves from the last position to the first position.
Under "Interpolation" you can select the modes "Straight", "Smooth" and "Curved". In "Straight" animations the camera moves straight between the different positions. In a "Smooth" animation the camera paths are straight but the change of the direction is performed as a smooth curve. And if you activate "Curved" the camera performs a curve between the single positions.Theoretically you could generate a circular camera ride with this setting.
At last the duration of the animation as well as the length of the path are displayed.

Figure 5

- The single camera positions are defined in the right part of the animation editor under "Positions". Follow these steps to create a new path:

1. Select an animation to which you want to add the positions.
2. Switch to your drawing and select the Perspective camera view.
3. In the drawing navigate to an appropriate view for the first position.
4. Click "Grab new position from selected view". The current view is added as first camera position.
5. Repeat steps 1 to 4 until you have simulated the desired camera path.

Alternatively you can click the camera icon . A list with all cameras that you have placed in your drawing is displayed. With a click onto one of the cameras it is added to the path. You can modify the name of each position. After setting the position the text is selected automatically and you can enter a new name. Press Enter to confirm. If you should like to change the name later you just need to select a position and press Enter. Now you can edit the name.

- To delete a position or camera, select it and click "Delete selected position(s)".
- To change the order of the positions / cameras, select one of the positions / cameras and press 』 or 拄. Alternatively you can move the positions / cameras by Drag \& Drop.
- If you want to edit a position at a later time do the following:

1. Activate the position by double-click in the position list of the animation editor. The position will be displayed in your drawing.
2. Modify the view.
3. Click in the animation editor to assign the current view to the selected position.

- Last but not least you can edit the camera speed as well as the pause time between the positions.
- If you click "Fixing viewing direction" the viewing direction remains fixed until the camera reaches the next position.
- "Interpolate viewing direction" smoothes the change of the viewing direction during a position change.

Figure 6 illustrates the path of an animation in blue. The single positions and viewing directions are marked with short blue arrows. If you select a position in the animation editor the corresponding arrow is highlighted in orange.

Figure 6

Animation along a path

You have the possibility to create an animation along a shape or along a drawing element.

To do this you first need to draw a shape without filling (deactivate "Draw with filling" before you draw the object - figure 7) and select it.

Figure 7

In this example a circle was drawn around the object. The circle will still be in the drawing after creating the animation and can be reused at any time.

Figure 8

Figure 9

Figure 10

To create the animation along this circle follow these steps:

1. Select the circle.
2. Click "Create animation along path " in the animation editor. The animation path is displayed in blue.
3. Click the path to set the starting point of the animation.
4. Click again to define the direction of the animation. The direction will be indicated by an orange arrow.
The animation is now created.
In this example the camera moves counterclockwise along the circle.

To create an animation along this circle around the piece of furniture follow these steps:
Select the circle (drawn without filling)

1. Click ${\underset{N}{k} k}_{\downarrow}^{k}$ "Create animation along path around target point" in the animation editor. The circle now turns into the animation path.
2. Now click the target point (in this example the center point of the circle) and again to set the direction of the path.
The camera will now perform a movement around the target point.

Record the animation

With a click on "Record" in the Animation Group you activate the Animation Recorder. There you can adjust the settings for the export of your animation as sequence of pictures. In the top part you can select the animation to be recorded.

Figure 11

Figure 12

On the Output tab (figure 11) you can select the output folder. Click the Folder icon and select a folder in the dialog. Alternatively you can click the path and enter it manually. A folder with the name of the animation is created. When you start the record process, pCon.planner saves the sequence of pictures in this folder.

Furthermore, you can set the resolution, the picture format and the frames per Second in this dialog.

Alternatively you can select a standardized profile. Please note that some of the options are only available in pCon. planner Pro.
The option "Keep view aspect ratio" reduces the size of the pictures in terms of hight and width to match the size of the pictures with the size of the viewport.

On the Options tab you can select the quality and the background color (figure 12).
There are three selectable levels of quality: "Standard", "High" and "Very High". For optimum results you should select "Very High". In this case though, the recording time will be much longer depending on the size of the drawing and performance of your computer.
Furthermore, you can select a background color or use the view background.

Click "Start" at the bottom of the Animation Recorder to start the record process. You may
be displayed a warning that you have selected an output setting that is only available in the pCon. planner Pro. In this case select the settings 480×388 or smaller.
Furthermore, you may be noticed that there is already a folder with the name of the animation. You can either overwrite the files of this folder or rename the path or the name of the animation.

Figure 13

When the record process starts, a window displays the record status of the picture as well as of the complete animation.

Along with the number of the currently processed picture and the percentage, you can see the elapsed time and the estimated total time.

You can interrupt the recording of the animation via the Pause button or cancel it.

Note

- You can select several animations/positions by moving the mouse over the animations/positions.
- When you move the mouse with the Shift key pressed the selected entry and all that is above the entry is also selected.
- To select several arbitrary entries press the Ctrl key and click the entries.

